A228153 Triangle read by columns: T(n,k) = maximal external path length of AVL trees of height n with k (leaf-) nodes, k>=1, A029837(k)<=n<A072649(k).
0, 2, 5, 8, 12, 16, 20, 24, 25, 30, 35, 40, 44, 49, 50, 54, 56, 59, 62, 64, 68, 73, 79, 85, 91, 97, 96, 102, 103, 107, 110, 113, 117, 119, 123, 125, 130, 131, 137, 136, 144, 142, 151, 148, 157, 154, 163, 160, 170, 177, 184, 180, 191, 188, 197, 196, 204, 204
Offset: 1
Examples
In the (two) AVL trees of height 2 the 3 external nodes (leaves) have once depth 1 and twice depth 2: o o / \ / \ o 1 1 o / \ / \ 2 2 2 2 so that the sum of depths is 5 for both trees. Triangle begins: 0 . 2 . . 5 8 . . . . 12 16 20 24 . . . . . . . 25 30 35 40 44 49 54 59 64 . . . . . . . . . . . . 50 56 62 68 73 79 85 91 97 102 ... . . . . . . . . . . . . . . . . . . . . 96 103 ...
References
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 6.2.3 (7) and (8).
Links
- Alois P. Heinz, Columns k = 1..3000, flattened
- R. C. Richards, Shape distribution of height-balanced trees, Info. Proc. Lett., 17 (1983), 17-20.
- Wikipedia, AVL tree
- Index entries for sequences related to rooted trees
Crossrefs
Triangle read by rows gives: A228152.
Row maxima give: n*2^n = A036289(n).
Row lengths give: 1+A008466(n).
Number of AVL trees read by rows gives: A143897.
The infimum of all external path lengths of binary trees with k (leaf-) nodes is: A003314(k) for k>0.
Column maxima give: A228155(k).
Column heights give: A217710(k).
Number of AVL trees read by columns gives: A217298.
Programs
-
Mathematica
maxNods = 100; Clear[T, A029837, A072649, A036289, A228155]; T[0, 1] = 0; A029837[1] = 0; A072649[1] = 1; A228155[1] = 0; For[k = 2, k <= maxNods, k++, A029837[k] = maxNods; A072649[k] = 0; A228155u = 0; For[kL = 1, kL <= Floor[k/2], kL++, For[hL = A029837[kL], hL <= A072649[kL] - 1, hL++, For[hR = Max[hL - 1, A029837[k - kL]], hR <= Min[hL + 1, A072649[k - kL] - 1], hR++, maxDepthSum = k + T[hL, kL] + T[hR, k - kL]; A228155u = Max[maxDepthSum, A228155u]; h = Max[hL, hR] + 1; If[ !IntegerQ[T[h, k]], T[h, k] = maxDepthSum, T[h, k] = Max[maxDepthSum, T[h, k]]]; A029837[k] = Min[h, A029837[k]]; If[ !IntegerQ[A036289[h]], A036289[h] = maxDepthSum, A036289[h] = Max[maxDepthSum, A036289[h]]]; A072649[k] = Max[h + 1, A072649[k]]; ]]]; A228155[k] = A228155u]; k =.; Table[ Select[ Table[T[n, k], {n, A029837[k], A072649[k] - 1}], IntegerQ], {k, 1, maxNods}] // Flatten (* Jean-François Alcover, Aug 19 2013, translated and adapted from Herbert Eberle's MuPAD program *)
-
MuPAD
maxNods:=100: // max number of leaves (= external nodes) // Triangle T for all AVL trees with <= maxNods leaves: delete T: // table T indexed [h, k] (h=height, k=number of leaves): T[0, 1]:=0: // A029837 indexed [k], min height of tree with k leaves: A029837:=array(1..maxNods): A029837[1]:=0: // A072649 indexed [k], 1+max height of AVL tree with k leaves: A072649:=array(1..maxNods): A072649[1]:=1: // A036289 indexed [h], max depthsum of all height h AVL trees: A036289:=array(1..maxNods): // A228155 indexed [k], max depthsum of all AVL trees with k leaves: A228155:=array(1..maxNods): A228155[1]:=0: for k from 2 to maxNods do: A029837[k]:=maxNods: // try infinity for the min height A072649[k]:=0: A228155u:=0: // Put together 2 AVL trees: for kL from 1 to floor(k/2) do: // kL leaves in the left tree for hL from A029837[kL] to A072649[kL]-1 do: for hR from max(hL-1, A029837[k-kL]) to min(hL+1, A072649[k-kL]-1) do: // k-kL leaves in the right subtree maxDepthSum:=T[hL, kL]+T[hR, k-kL]+k: A228155u:=max(maxDepthSum, A228155u): h:=max(hL, hR)+1: if type(T[h, k]) <> DOM_INT then // T[h, k] uninit T[h, k]:=maxDepthSum: else T[h, k]:=max(maxDepthSum, T[h, k]): end_if: A029837[k]:=min(h, A029837[k]): if type(A036289[h]) <> DOM_INT then A036289[h]:=maxDepthSum: else A036289[h]:=max(maxDepthSum, A036289[h]): end_if: A072649[k]:=max(h+1, A072649[k]): end_for: // hR end_for: // hL end_for: // kL A228155[k]:=A228155u: end_for: // k
Comments