cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228161 Number triangle associated to Chebyshev polynomials of the second kind.

This page as a plain text file.
%I A228161 #23 Feb 24 2025 04:37:07
%S A228161 1,0,1,-1,2,1,0,3,4,1,1,4,15,6,1,0,5,56,35,8,1,-1,6,209,204,63,10,1,0,
%T A228161 7,780,1189,496,99,12,1,1,8,2911,6930,3905,980,143,14,1,0,9,10864,
%U A228161 40391,30744,9701,1704,195,16,1,-1,10,40545,235416,242047,96030,20305,2716,255,18,1
%N A228161 Number triangle associated to Chebyshev polynomials of the second kind.
%C A228161 Compare the definition of U_n(x) with the definition of the Dirichlet kernel.
%C A228161 U_n(x) is defined as sin((n+1)*arccos(x))/sin(arccos(x)).
%C A228161 U_n(x) is a polynomial in x with integer coefficients for all n >=0.
%C A228161 The initial term is U_0(0).
%C A228161 The triangle is given here as U_0(0), U_1(0), U_1(1), U_2(0), U_2(1), U_2(2), U_3(0),....
%H A228161 T. D. Noe, <a href="/A228161/b228161.txt">Rows n = 0..100 of triangle, flattened</a>
%H A228161 Wikipedia, <a href="http://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>
%F A228161 The polynomials can be computed with U_{n+1}(x) = 2*x*U_n(x) - U_{n-1}(x), U_{n+1}(x) = ((U_n(x))^2-1)/U_{n-1}(x), where in each case U_0(x) = 1; U_1(x) = 2*x.
%e A228161 Triangle begins:
%e A228161   1,
%e A228161   0, 1,
%e A228161  -1, 2,  1,
%e A228161   0, 3,  4,  1,
%e A228161   1, 4, 15,  6, 1,
%e A228161   0, 5, 56, 35, 8, 1,
%e A228161   ...
%t A228161 nn = 10; Flatten[Table[ChebyshevU[i - j, j], {i, 0, nn}, {j, 0, i}]] (* _T. D. Noe_, Aug 16 2013 *)
%Y A228161 Cf. A101124 (number triangle for Chebyshev polynomials of the first kind).
%Y A228161 Cf. A133156 (coefficients of powers of x in U_n(x)).
%K A228161 sign,easy,tabl
%O A228161 0,5
%A A228161 _Jonny Griffiths_, Aug 14 2013
%E A228161 More terms from _Michel Marcus_, Feb 24 2025