This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228195 #23 Oct 15 2023 16:47:29 %S A228195 17,2897,11471,15527,19949,26693,26783,72467,78041,142757,159209, %T A228195 216791,350747,366917,672593,725891,775007,1187939,1529153,1659737, %U A228195 2024093,2035097,2035349,2105231,2127761,2598929,2645933,2917799,3322439,3497993,3970643,4042697,4067513,4280051,4329257,4464017,5839397 %N A228195 Primes with the property that the sum of the cubes of their digits plus the prime equals another prime squared. %H A228195 Charles R Greathouse IV, <a href="/A228195/b228195.txt">Table of n, a(n) for n = 1..10000</a> %e A228195 17 is a term since (1^3 + 7^3) + 17 = 19^2. %e A228195 2897 is a term since (2^3 + 8^3 + 9^3 + 7^3) + 2897 = 67^2. %e A228195 11471 is a term since (1^3 + 1^3 + 4^3 + 7^3 + 1^3) + 11471 = 109^2. %t A228195 Select[Prime[Range[403000]],PrimeQ[Sqrt[#+Total[IntegerDigits[#]^3]]]&] (* _Harvey P. Dale_, Oct 15 2023 *) %o A228195 (PARI) is(n)=my(d=digits(n),k); issquare(sum(i=1,#d,d[i]^3)+n,&k) && isprime(k) && isprime(n) \\ _Charles R Greathouse IV_, Jun 16 2014 %o A228195 (PARI) searchdigit(n)=my(v=List(),N1=10^(n-1),N2=10^n,t=729*n,d,k,p2);forprime(p=sqrtint(N1)+1,sqrtint(N2+t),p2=p^2;forprime(q=max(N1,p2-t+2),min(N2,p2-2),d=digits(q);if(sum(i=1,#d,d[i]^3)+q==p2,listput(v,q))));Vec(v) %o A228195 v=[];for(n=1,9,v=concat(v,searchdigit(n))); v \\ _Charles R Greathouse IV_, Jun 16 2014 %K A228195 nonn,base,less %O A228195 1,1 %A A228195 _Will Gosnell_, Aug 15 2013 %E A228195 a(10)-a(37) from _Charles R Greathouse IV_, Jun 16 2014