A228218 T(n,k)=Number of second differences of arrays of length n+2 of numbers in 0..k.
5, 9, 15, 13, 49, 31, 17, 103, 199, 63, 21, 177, 625, 665, 127, 25, 271, 1429, 3151, 2059, 255, 29, 385, 2731, 9705, 14053, 6305, 511, 33, 519, 4651, 23351, 58141, 58975, 19171, 1023, 37, 673, 7309, 47953, 176851, 320481, 242461, 58025, 2047, 41, 847, 10825
Offset: 1
Examples
Some solutions for n=4 k=4 ..4...-5....3...-3....6...-4...-3...-5...-8....1....5...-2....4...-3...-1...-6 .-6....7....1...-2...-6....1....4....5....6...-5...-5....1....0....0...-3....4 ..2...-3...-1....5....4....2....0...-2...-2....5....7....1....0...-3....3....1 .-2...-1...-2...-1...-6....0...-4....4....1....2...-7....1....4....6...-4...-6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..310
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=2: a(n) = 5*a(n-1) -6*a(n-2) for n>5
k=3: a(n) = 7*a(n-1) -12*a(n-2) for n>7
k=4: a(n) = 9*a(n-1) -20*a(n-2) for n>9
k=5: a(n) = 11*a(n-1) -30*a(n-2) for n>11
k=6: a(n) = 13*a(n-1) -42*a(n-2) for n>13
k=7: a(n) = 15*a(n-1) -56*a(n-2) for n>15
Empirical for row n:
n=1: a(n) = 4*n + 1
n=2: a(n) = 10*n^2 + 4*n + 1
n=3: a(n) = 20*n^3 + 9*n^2 + 1*n + 1
n=4: a(n) = 35*n^4 + 14*n^3 - 17*n^2 + 30*n + 1
n=5: a(n) = 56*n^5 + 14*n^4 - 108*n^3 + 289*n^2 - 125*n + 1
n=6: a(n) = 84*n^6 - 402*n^4 + 1656*n^3 - 1860*n^2 + 776*n + 1
n=7: a(n) = 120*n^7 - 42*n^6 - 1158*n^5 + 6945*n^4 - 13980*n^3 + 13512*n^2 - 4887*n + 1
Comments