cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228218 T(n,k)=Number of second differences of arrays of length n+2 of numbers in 0..k.

Original entry on oeis.org

5, 9, 15, 13, 49, 31, 17, 103, 199, 63, 21, 177, 625, 665, 127, 25, 271, 1429, 3151, 2059, 255, 29, 385, 2731, 9705, 14053, 6305, 511, 33, 519, 4651, 23351, 58141, 58975, 19171, 1023, 37, 673, 7309, 47953, 176851, 320481, 242461, 58025, 2047, 41, 847, 10825
Offset: 1

Views

Author

R. H. Hardin Aug 16 2013

Keywords

Comments

Table starts
....5......9......13.......17........21.........25.........29..........33
...15.....49.....103......177.......271........385........519.........673
...31....199.....625.....1429......2731.......4651.......7309.......10825
...63....665....3151.....9705.....23351......47953......88215......149681
..127...2059...14053....58141....176851.....439927.....951049.....1854553
..255...6305...58975...320481...1225631....3693505....9399615....21108545
..511..19171..242461..1688101...8006491...29066311...86929081...224817481
.1023..58025..989527..8717049..50556551..219071473..766106895..2276277137
.2047.175099.4017157.44633821.313882531.1609259287.6537612649.22222129177

Examples

			Some solutions for n=4 k=4
..4...-5....3...-3....6...-4...-3...-5...-8....1....5...-2....4...-3...-1...-6
.-6....7....1...-2...-6....1....4....5....6...-5...-5....1....0....0...-3....4
..2...-3...-1....5....4....2....0...-2...-2....5....7....1....0...-3....3....1
.-2...-1...-2...-1...-6....0...-4....4....1....2...-7....1....4....6...-4...-6
		

Crossrefs

Row 1 is A004766. A228212 (k=2), A228213 (k=3), A228213 (k=4), A228215 (k=5).

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=2: a(n) = 5*a(n-1) -6*a(n-2) for n>5
k=3: a(n) = 7*a(n-1) -12*a(n-2) for n>7
k=4: a(n) = 9*a(n-1) -20*a(n-2) for n>9
k=5: a(n) = 11*a(n-1) -30*a(n-2) for n>11
k=6: a(n) = 13*a(n-1) -42*a(n-2) for n>13
k=7: a(n) = 15*a(n-1) -56*a(n-2) for n>15
Empirical for row n:
n=1: a(n) = 4*n + 1
n=2: a(n) = 10*n^2 + 4*n + 1
n=3: a(n) = 20*n^3 + 9*n^2 + 1*n + 1
n=4: a(n) = 35*n^4 + 14*n^3 - 17*n^2 + 30*n + 1
n=5: a(n) = 56*n^5 + 14*n^4 - 108*n^3 + 289*n^2 - 125*n + 1
n=6: a(n) = 84*n^6 - 402*n^4 + 1656*n^3 - 1860*n^2 + 776*n + 1
n=7: a(n) = 120*n^7 - 42*n^6 - 1158*n^5 + 6945*n^4 - 13980*n^3 + 13512*n^2 - 4887*n + 1