cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228222 Number of second differences of arrays of length 7 of numbers in 0..n.

Original entry on oeis.org

127, 2059, 14053, 58141, 176851, 439927, 951049, 1854553, 3342151, 5659651, 9113677, 14078389, 21002203, 30414511, 42932401, 59267377, 80232079, 106747003, 139847221, 180689101, 230557027, 290870119, 363188953, 449222281, 550833751
Offset: 1

Views

Author

R. H. Hardin, Aug 16 2013

Keywords

Examples

			Some solutions for n=4:
.-7....5...-3....1...-2...-1....1....5...-1....3....6...-6....5....0....5...-1
..2...-1....1...-2....2....0...-1...-6...-1...-1...-3....5....2....1....0....2
..2...-1...-2....5...-2...-2....2....4....6...-1....4....1...-6....3...-5....0
.-2...-1...-1...-7....3....0....0...-6...-8....3...-3...-2....4...-4....5...-5
..4....2....3....5...-2....4....0....4....6...-6...-3...-3....1....1...-1....8
		

Crossrefs

Row 5 of A228218.

Formula

Empirical: a(n) = 56*n^5 + 14*n^4 - 108*n^3 + 289*n^2 - 125*n + 1.
Conjectures from Colin Barker, Sep 10 2018: (Start)
G.f.: x*(127 + 1297*x + 3604*x^2 + 2168*x^3 - 475*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)