cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228250 Total sum A(n,k) of lengths of longest contiguous subsequences with the same value over all s in {1,...,n}^k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

This page as a plain text file.
%I A228250 #24 Sep 21 2018 22:30:05
%S A228250 0,0,0,0,1,0,0,2,2,0,0,3,6,3,0,0,4,16,12,4,0,0,5,38,45,20,5,0,0,6,86,
%T A228250 156,96,30,6,0,0,7,188,519,436,175,42,7,0,0,8,404,1680,1916,980,288,
%U A228250 56,8,0,0,9,856,5349,8232,5345,1914,441,72,9,0
%N A228250 Total sum A(n,k) of lengths of longest contiguous subsequences with the same value over all s in {1,...,n}^k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%H A228250 Alois P. Heinz, <a href="/A228250/b228250.txt">Antidiagonals n = 0..140, flattened</a>
%H A228250 Project Euler, <a href="https://projecteuler.net/problem=427">Problem 427: n-sequences</a>
%e A228250 A(4,1) = 4 = 1+1+1+1: [1], [2], [3], [4].
%e A228250 A(1,4) = 4: [1,1,1,1].
%e A228250 A(3,2) = 12 = 2+1+1+1+2+1+1+1+2: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3].
%e A228250 A(2,3) = 16 = 3+2+1+2+2+1+2+3: [1,1,1], [1,1,2], [1,2,1], [1,2,2], [2,1,1], [2,1,2], [2,2,1], [2,2,2].
%e A228250 Square array A(n,k) begins:
%e A228250   0, 0,  0,   0,    0,     0,      0,       0, ...
%e A228250   0, 1,  2,   3,    4,     5,      6,       7, ...
%e A228250   0, 2,  6,  16,   38,    86,    188,     404, ...
%e A228250   0, 3, 12,  45,  156,   519,   1680,    5349, ...
%e A228250   0, 4, 20,  96,  436,  1916,   8232,   34840, ...
%e A228250   0, 5, 30, 175,  980,  5345,  28610,  151115, ...
%e A228250   0, 6, 42, 288, 1914, 12450,  79716,  504492, ...
%e A228250   0, 7, 56, 441, 3388, 25571, 190428, 1403689, ...
%p A228250 b:= proc(n, m, s, i) option remember; `if`(m>i or s>m, 0,
%p A228250       `if`(i=0, 1, `if`(i=1, n, `if`(s=1, (n-1)*add(
%p A228250          b(n, m, h, i-1), h=1..m), b(n, m, s-1, i-1)+
%p A228250       `if`(s=m, b(n, m-1, s-1, i-1), 0)))))
%p A228250     end:
%p A228250 A:= (n, k)-> add(m*add(b(n, m, s, k), s=1..m), m=1..k):
%p A228250 seq(seq(A(n, d-n), n=0..d), d=0..12);
%t A228250 b[n_, m_, s_, i_] := b[n, m, s, i] = If[m>i || s>m, 0, If[i == 0, 1, If[i == 1, n, If[s == 1, (n-1)*Sum[b[n, m, h, i-1], {h, 1, m}], b[n, m, s-1, i-1] + If[s == m, b[n, m-1, s-1, i-1], 0]]]]]; A[n_, k_] := Sum[m*Sum[b[n, m, s, k], {s, 1, m}], {m, 1, k}]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Jan 19 2015, after _Alois P. Heinz_ *)
%Y A228250 Columns k=0-3 give: A000004, A001477, A002378, A152618(n+1).
%Y A228250 Rows n=0-2 give: A000004, A001477, 2*A102712.
%Y A228250 Main diagonal gives: A228194.
%Y A228250 Cf. A228275.
%K A228250 nonn,tabl
%O A228250 0,8
%A A228250 _Alois P. Heinz_, Aug 18 2013