A228252 Determinant of the (n+1) X (n+1) matrix with (i,j)-entry equal to (i-2j)^n for all i,j = 0,...,n.
1, 2, 64, 82944, 8153726976, 97844723712000000, 210357201231685877760000000, 111759427954264225978066246041600000000, 19353724511515955943723861007628909886308352000000000, 1393093075882582456065167957036969287436705021776979747143680000000000, 51765823014530203817669442380756522498563227474168874049894256476160000000000000000000000
Offset: 0
Keywords
Examples
Northwest corner of matrix corresponding to a(n): 0^n (-2)^n (-4)^n (-6)^n (-8)^n 1 (-1)^n (-3)^n (-5)^n (-7)^n 2^n 0 (-2)^n (-4)^n (-6)^n 3^n 1 (-1)^n (-3)^n (-5)^n 4^n 2^n 0 (-2)^n (-4)^n
References
- J. M. Monier, Algèbre et géometrie, Dunod, 1996.
Links
- Iain Fox, Table of n, a(n) for n = 0..28
- C. Krattenthaler, Advanced Determinant Calculus: A Complement, Linear Algebra Appl. 411 (2005), 68-166; arXiv:math/0503507 [math.CO], 2017.
Crossrefs
Cf. A176113.
Programs
Formula
a(n) = 2^(n*(n+1)/2)*(n!)^(n+1) as shown by comments. - Iain Fox, Apr 15 2018
Comments