This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228287 #24 Feb 09 2025 17:30:54 %S A228287 1,1,1,1,1,1,2,1,1,1,2,1,2,1,1,1,2,1,2,1,1,1,2,1,1,1,1,1,2,1,2,1,1,2, %T A228287 1,1,2,1,1,1,2,1,2,1,1,2,3,1,1,1,1,1,2,1,1,1,1,2,3,1,2,3,1,1,1,1,2,1, %U A228287 2,1,2,1,2,3,1,1,1,1,2,1,1,2,3,1,1,2,1 %N A228287 Smallest value of z in the minimal value of x + y*z, given x*y + z = n (where x, y, z are positive integers). %C A228287 If there are multiple triples (x, y, z) for which xy + z = n and x + yz is minimized, consider the triple with smallest z. I.e., this sequence illustrates the smallest z needed to minimize x + y*z. %e A228287 For n = 215 the triples (53, 4, 3) and (35, 6, 5) both give the minimal value of x + yz = 65. Thus a(215) = 3. %p A228287 A228287 := proc(n) %p A228287 local a,x,y,z,zfin ; %p A228287 a := n+n^2 ; %p A228287 zfin := n ; %p A228287 for z from 1 to n-1 do %p A228287 for x in numtheory[divisors](n-z) do %p A228287 y := (n-z)/x ; %p A228287 if x+y*z < a then %p A228287 a := x+y*z ; %p A228287 zfin := z ; %p A228287 end if; %p A228287 end do: %p A228287 end do: %p A228287 return zfin; %p A228287 end proc: # _R. J. Mathar_, Sep 02 2013 %t A228287 A228287[n_] := Module[{a, x, y, z, zfin}, a = n + n^2; zfin = n; Do[Do[y = (n-z)/x; If[x + y*z < a, a = x + y*z; zfin = z], {x, Divisors[n-z]}], {z, 1, n-1}]; zfin]; %t A228287 Table[A228287[n], {n, 2, 100}] (* _Jean-François Alcover_, Aug 08 2023, after _R. J. Mathar_ *) %Y A228287 Cf. A228286. %K A228287 nonn %O A228287 2,7 %A A228287 _Andy Niedermaier_, Aug 19 2013