A228301 Composite squarefree numbers n such that p-d(n) divides n+d(n), where p are the prime factors of n and d(n) the number of divisors of n.
6, 10, 14, 15, 35, 70, 154, 190, 322, 385, 442, 595, 682, 2737, 3619, 14986, 15314, 19019, 24817, 26767, 33626, 78387, 85034, 130169, 155363, 166934, 189727, 214107, 225029, 238901, 243217, 285934, 381547, 395219, 415679, 417989, 455609, 466193, 544918
Offset: 1
Keywords
Examples
Prime factors of 19019 are 7, 11, 13 and 19 while d(19019) = 16. We have that 19019 + 16 = 19035 and 19035 / (7 - 16) = -2115, 19035 / (11 - 16) = -3807, 19035 / (13 - 16) = -6345 and 19035 / (19 - 16) = 6345.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..500
Programs
-
Maple
with (numtheory); P:=proc(q) local a,b,c,i,ok,p,n; for n from 2 to q do if not isprime(n) then a:=ifactors(n)[2]; ok:=1; for i from 1 to nops(a) do if a[i][2]>1 or a[i][1]=tau(n) then ok:=0; break; else if not type((n+tau(n))/(a[i][1]-tau(n)),integer) then ok:=0; break; fi; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^6);
Extensions
First term deleted by Paolo P. Lava, Sep 23 2013
Comments