This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228307 #10 Feb 16 2025 08:33:20 %S A228307 105,225,420,714,1134,1710,2475,3465,4719,6279,8190,10500,13260,16524, %T A228307 20349,24795,29925,35805,42504,50094,58650,68250,78975,90909,104139, %U A228307 118755,134850,152520,171864,192984,215985,240975,268065,297369,329004,363090 %N A228307 The hyper-Wiener index of the Kneser graph K(n,2) (n>=5). %C A228307 The Kneser graph K(n,2) is the graph whose vertices represent the 2-subsets of {1,2,...,n} and two vertices are connected if and only if they correspond to disjoint subsets. %C A228307 K(n,2) is disconnected for n<=4. %C A228307 K(5,2) is the Petersen graph. %C A228307 The Kneser graph K(n,2) is distance-regular with intersection array [(n-2)*(n-3)/2, 2*(n-4); 1, (n-3)*(n-4)/2]. %D A228307 R. Balakkrishnan, S. Francis Raj, The Wiener number of Kneser graphs, Discussiones Math, Graph Theory, 28, 2008, 219-228. %H A228307 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KneserGraph.html">Kneser Graph</a>. %H A228307 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A228307 a(n) = (1/8)*n*(n-1)*(n-2)*(n+9). %F A228307 G.f.: 3*x^5*(35-100*x+115*x^2-62*x^3+13*x^4)/(1-x)^5. %F A228307 The Hosoya-Wiener polynomial of K(n,2) is (1/8)*n*(n-1)*(n-2)*t*(n-3+4*t). %F A228307 a(n) = 3*A095661(n-3). - _R. J. Mathar_, Aug 21 2013 %p A228307 a := proc (n) options operator, arrow: (1/8)*n*(n-1)*(n-2)*(n+9) end proc: seq(a(n), n = 5 .. 40); %Y A228307 Cf. A228306 %K A228307 nonn,easy %O A228307 5,1 %A A228307 _Emeric Deutsch_, Aug 20 2013