This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228310 #14 Feb 16 2025 08:33:20 %S A228310 10,72,448,2560,13824,71680,360448,1769472,8519680,40370176,188743680, %T A228310 872415232,3992977408,18119393280,81604378624,365072220160, %U A228310 1623497637888,7181185318912,31610959298560,138538465099776,604731395276800,2630031813640192 %N A228310 The hyper-Wiener index of the hypercube graph Q(n) (n>=2). %C A228310 The hypercube graph Q(n) has as vertices the binary words of length n and an edge joins two vertices whenever the corresponding binary words differ in just one place. %C A228310 Q(n) is distance-transitive and therefore also distance-regular. The intersection array is {n,n-1,n-2,...,1; 1,2,3,...,n-1,n}. %D A228310 Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993 (p. 161). %H A228310 R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer,, <a href="/A136328/a136328.pdf">The Wiener index of odd graphs</a>, J. Ind. Inst. Sci., vol. 86, no. 5, 2006. [Cached copy] %H A228310 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HypercubeGraph.html">Hypercube Graph</a>. %H A228310 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12,-48,64) %F A228310 a(n) = 4^{n-2}*n*(3+n). %F A228310 G.f.: 2*x^2*(5 - 24*x + 32*x^2)/(1-4*x)^3. %F A228310 The Hosoya-Wiener polynomial of Q(n) is 2^{n-1}*((1+t)^n - 1). %p A228310 a := proc (n) options operator, arrow: 4^(n-2)*n*(3+n) end proc: seq(a(n), n = 2 .. 25); %t A228310 LinearRecurrence[{12,-48,64},{10,72,448},30] (* _Harvey P. Dale_, Dec 13 2024 *) %Y A228310 Cf. A143376, A002697 %K A228310 nonn,easy %O A228310 2,1 %A A228310 _Emeric Deutsch_, Aug 20 2013