cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228313 Triangle read by rows: T(p,q) (1<=q<=p) is the Wiener index of the Cartesian product of the cycles C(p) and C(q) (the torus grid graph).

Original entry on oeis.org

0, 1, 8, 3, 21, 54, 8, 48, 120, 256, 15, 85, 210, 440, 750, 27, 144, 351, 720, 1215, 1944, 42, 217, 525, 1064, 1785, 2835, 4116, 64, 320, 768, 1536, 2560, 4032, 5824, 8192, 90, 441, 1053, 2088, 3465, 5427, 7812, 10944, 14580, 125, 600, 1425, 2800
Offset: 1

Views

Author

Emeric Deutsch, Aug 25 2013

Keywords

Comments

T(n,n) = A122657(n).
T(n,1) = A034828(n).
T(n,2) = A138179(n) (n>=3).

Crossrefs

Programs

  • Maple
    Wi := proc (p, q) if `mod`(p, 2) = 1 and `mod`(q, 2) = 1 then (1/8)*p*q*(p+q)*(p*q-1) elif `mod`(p, 2) = 0 and `mod`(q, 2) = 0 then (1/8)*p^2*q^2*(p+q) elif `mod`(p, 2) = 1 and `mod`(q, 2) = 0 then (1/8)*p*q^2*(p^2+p*q-1) else (1/8)*p^2*q*(q^2+p*q-1) end if end proc: for i to 10 do seq(Wi(i, j), j = 1 .. i) end do; # yields sequence in triangular form
    H := proc (p, q) local br, h: br := proc (n) options operator, arrow: sum(t^k, k = 0 .. n-1) end proc: h := proc (m) if `mod`(m, 2) = 0 then m*(br((1/2)*m)-1)+(1/2)*m*t^((1/2)*m) else m*t*br((1/2)*m-1/2) end if end proc: sort(expand(2*h(p)*h(q)+p*h(q)+q*h(p))) end proc: Wi := proc (p, q) options operator, arrow: subs(t = 1, diff(H(p, q), t)) end proc: for i to 10 do seq(Wi(i, j), j = 1 .. i) end do; # yields sequence in triangular form

Formula

T(p,q) = pq(p+q)(pq - 1)/8 if both p and q are odd.
T(p,q) = p^2*q^2*(p + q)/8 if both p and q are even.
T(p,q) = pq^2*(p^2 - 1 + pq)/8 if p is odd and q is even.
T(p,q) = p^2*q*(q^2 - 1 + pq)/8 if p is even and q is odd.
The first Maple program makes use of the above formulas.
The Hosoya-Wiener polynomial of C(p) X C(q) is 2*h(p)*h(q) + p*h(q) + q*h(p), where h(j) denotes the Hosoya-Wiener polynomial of the cycle C(j).
The command H(p,q) in the 2nd Maple program yields the corresponding Hosoya-Wiener polynomial.