This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228315 #29 Aug 27 2013 02:25:34 %S A228315 1,2,2,6,6,12,32,24,48,152,320,160,240,760,3640,6144,1920,1920,4560, %T A228315 21840,160224,229376,43008,26880,42560,152880,1121568,13063792, %U A228315 16777216,1835008,688128,680960,1630720,8972544,104510336,2012388736 %N A228315 Triangular array read by rows: T(n,k) is the number of rooted labeled simple graphs on {1,2,...,n} such that the root is in a component of size k; n>=1, 1<=k<=n. %C A228315 Row sums = A095340. %C A228315 Column 1 = A123903. %C A228315 T(n,k) = A223894(n,k)*k. %C A228315 Diagonal = A053549. %D A228315 F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, page 7. %H A228315 Alois P. Heinz, <a href="/A228315/b228315.txt">Rows n = 1..45, flattened</a> %H A228315 <a href="/index/Gra#graphs">Index entries for sequences related to graphs</a> %F A228315 T(n,k) = binomial(n,k)*k*A001187(k)*A006125(n-k). %e A228315 1; %e A228315 2, 2; %e A228315 6, 6, 12; %e A228315 32, 24, 48, 152; %e A228315 320, 160, 240, 760, 3640; %p A228315 b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)- %p A228315 add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n) %p A228315 end: %p A228315 T:= (n, k)-> binomial(n, k)*k*b(k)*2^((n-k)*(n-k-1)/2): %p A228315 seq(seq(T(n, k), k=1..n), n=1..10); # _Alois P. Heinz_, Aug 26 2013 %t A228315 nn = 10; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; a = %t A228315 Drop[Range[0, nn]! CoefficientList[Series[Log[g], {x, 0, nn}], x], %t A228315 1]; Table[ %t A228315 Table[Binomial[n, k] k a[[k]] 2^Binomial[n - k, 2], {k, 1, n}], {n, %t A228315 1, 7}] // Grid %Y A228315 Cf. A070166. %K A228315 nonn,tabl %O A228315 1,2 %A A228315 _Geoffrey Critzer_, Aug 26 2013