A228316 The hyper-Wiener index of the Cartesian product of the cycles C(n) and C(n) (a Torus Grid Graph).
0, 10, 72, 448, 1450, 4482, 10388, 23552, 45360, 86250, 147620, 250560, 395122, 619458, 919800, 1359872, 1928208, 2725002, 3725520, 5080000, 6742890, 8931010, 11568172, 14957568, 18980000, 24048362, 29985228, 37340352, 45859730, 56261250
Offset: 1
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Programs
-
Maple
a := proc (n) if `mod`(n, 2) = 1 then (1/96)*n^2*(n^2-1)*(7*n^2+12*n-3) else (1/96)*n^4*(7*n^2+12*n+8) end if end proc: seq(a(n), n = 1 .. 30);
Formula
a(n) = n^2*(n^2-1)*(7*n^2+12*n-3)/96 if n is odd; a(n) = n^4*(7*n^2+12*n+8)/96 if n is even.
G.f.: 2*x^2*(5 + 26*x + 132*x^2 + 183*x^3 +280*x^4 + 132*x^5 +74*x^6 + 7*x^7 + x^8) / ((1-x)^7*(1+x)^5).
Comments