cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228318 The Wiener index of the graph obtained by applying Mycielski's construction to the star graph K(1,n).

This page as a plain text file.
%I A228318 #25 Nov 16 2024 12:34:44
%S A228318 15,33,59,93,135,185,243,309,383,465,555,653,759,873,995,1125,1263,
%T A228318 1409,1563,1725,1895,2073,2259,2453,2655,2865,3083,3309,3543,3785,
%U A228318 4035,4293,4559,4833,5115,5405,5703,6009
%N A228318 The Wiener index of the graph obtained by applying Mycielski's construction to the star graph K(1,n).
%D A228318 D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
%H A228318 H. P. Patil and R. Pandiya Raj, <a href="https://doi.org/10.7151/dmgt.1670">On the total graph of Mycielski graphs, central graphs and their covering numbers</a>, Discussiones Mathematicae Graph Theory, Vol. 33 (2013), pp. 361-371.
%H A228318 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A228318 a(n) = 4*n^2 + 6*n + 5.
%F A228318 G.f.: x*(15-12*x+5*x^2)/(1-x)^3.
%F A228318 The Hosoya-Wiener polynomial is (4*n+1)*t + (2*n^2 + n + 2)*t^2.
%F A228318 From _Elmo R. Oliveira_, Nov 15 2024: (Start)
%F A228318 E.g.f.: exp(x)*(4*x^2 + 10*x + 5) - 5.
%F A228318 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
%e A228318 a(1)=15; indeed K(1,1) is the 1-edge graph; the Mycielski construction yields the cycle C(5); its Wiener index is 5*1 + 5*2 = 15.
%p A228318 a := proc (n) options operator, arrow: 4*n^2+6*n+5 end proc; seq(a(n), n = 1 .. 38);
%t A228318 LinearRecurrence[{3,-3,1},{15,33,59},50] (* _Harvey P. Dale_, Jan 13 2022 *)
%o A228318 (PARI) a(n)=4*n^2+6*n+5 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y A228318 Cf. A228319.
%K A228318 nonn,easy
%O A228318 1,1
%A A228318 _Emeric Deutsch_, Aug 27 2013