cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228319 The hyper-Wiener index of the graph obtained by applying Mycielski's construction to the star graph K(1,n).

This page as a plain text file.
%I A228319 #24 Nov 16 2024 12:33:11
%S A228319 20,45,82,131,192,265,350,447,556,677,810,955,1112,1281,1462,1655,
%T A228319 1860,2077,2306,2547,2800,3065,3342,3631,3932,4245,4570,4907,5256,
%U A228319 5617,5990,6375,6772,7181,7602,8035,8480,8937,9406,9887,10380
%N A228319 The hyper-Wiener index of the graph obtained by applying Mycielski's construction to the star graph K(1,n).
%D A228319 D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
%H A228319 H. P. Patil and R. Pandiya Raj, <a href="https://doi.org/10.7151/dmgt.1670">On the total graph of Mycielski graphs, central graphs and their covering numbers</a>, Discussiones Mathematicae Graph Theory, Vol. 33 (2013), pp. 361-371.
%H A228319 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A228319 a(n) = 6*n^2 + 7*n + 7.
%F A228319 G.f.: x*(20-15*x+7*x^2)/(1-x)^3.
%F A228319 The Hosoya-Wiener polynomial is (4*n+1)*t + (2*n^2 + n + 2)*t^2.
%F A228319 From _Elmo R. Oliveira_, Nov 15 2024: (Start)
%F A228319 E.g.f.: exp(x)*(6*x^2 + 13*x + 7) - 7.
%F A228319 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
%p A228319 a := proc (n) options operator, arrow: 6*n^2+7*n+7 end proc: seq(a(n), n = 1 .. 42);
%o A228319 (PARI) a(n)=6*n^2+7*n+7 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y A228319 Cf. A228318.
%K A228319 nonn,easy
%O A228319 1,1
%A A228319 _Emeric Deutsch_, Aug 27 2013