cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228321 The Wiener index of the graph obtained by applying Mycielski's construction to the path graph on n vertices (n>=2).

This page as a plain text file.
%I A228321 #9 Jul 04 2023 11:33:22
%S A228321 15,33,62,103,156,221,298,387,488,601,726,863,1012,1173,1346,1531,
%T A228321 1728,1937,2158,2391,2636,2893,3162,3443,3736,4041,4358,4687,5028,
%U A228321 5381,5746,6123,6512,6913,7326,7751,8188,8637,9098,9571,10056,10553,11062
%N A228321 The Wiener index of the graph obtained by applying Mycielski's construction to the path graph on n vertices (n>=2).
%D A228321 D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001, p. 205.
%H A228321 R. Balakrishnan, S. F. Raj, <a href="http://dx.doi.org/10.7151/dmgt.1509">The Wiener number of powers of the Mycielskian</a>, Discussiones Math. Graph Theory, 30, 2010, 489-498 (see Theorem 2.1).
%H A228321 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3, -3, 1).
%F A228321 a(2)=15; a(n) = 6n^2 - 13n + 18  (n>=3).
%F A228321 G.f.: x^2*(15-12*x+8*x^2+x^3)/(1-x)^3.
%e A228321 a(2)=15 because the Mycielskian of the 1-edge graph is the cycle graph C(5) with Wiener index 5*1+5*2 = 15.
%p A228321 a := proc (n) if n = 2 then 15 else 6*n^2-13*n+18 end if end proc: seq(a(n), n = 2 .. 45);
%K A228321 nonn,easy
%O A228321 2,1
%A A228321 _Emeric Deutsch_, Aug 27 2013