This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228335 #55 Mar 02 2020 01:03:06 %S A228335 1,1,1,3,6,1,14,40,15,1,84,300,175,28,1,594,2475,1925,504,45,1,4719, %T A228335 22022,21021,7644,1155,66,1,40898,208208,231868,107016,23100,2288,91, %U A228335 1,379236,2068560,2598960,1439424,403920,58344,4095,120,1,3711916,21414900,29651400,18976896,6523308,1247103,129675,6800,153,1 %N A228335 Triangle read by rows: the Y-transformation of the Catalan triangle A033184. %C A228335 From _Roger Ford_, Feb 08 2020: (Start) %C A228335 For 2n-step octant walks, the numbers for the x axis ending locations are equal to numbers in row n of the example triangle. %C A228335 Example: For n = 2, all 4-step octant walks starting at (0,0) and ending on the x axis are as follows: %C A228335 EWEW EEWW EEEW EWEE EEWE EEEE %C A228335 ENSW EENS ENSE ENES %C A228335 (0,0) (2,0) (4,0) - x axis ending location %C A228335 3 6 1 - number of walks %C A228335 These numbers match row 2 of the example triangle. (End) %H A228335 Yidong Sun and Fei Ma, <a href="http://arxiv.org/abs/1305.2017">Four transformations on the Catalan triangle</a>, arXiv preprint arXiv:1305.2017 [math.CO], 2013. %H A228335 Yidong Sun and Fei Ma, <a href="https://doi.org/10.37236/3701">Some new binomial sums related to the Catalan triangle</a>, Electronic Journal of Combinatorics 21(1) (2014), #P1.33. %e A228335 Triangle begins: %e A228335 1; %e A228335 1, 1; %e A228335 3, 6, 1; %e A228335 14, 40, 15, 1; %e A228335 84, 300, 175, 28, 1; %e A228335 594, 2475, 1925, 504, 45, 1; %e A228335 ... %t A228335 nn = 9; %t A228335 c[n_, k_] := Binomial[2n-k, n] (k+1)/(n+1); %t A228335 a[0, 0] = 1; %t A228335 a[n_, k_] := Table[c[n+k+i, 2k+j], {i, 2}, {j, 2}] // Det; %t A228335 Table[a[n, k], {n, 0, nn}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 12 2018 *) %o A228335 (PARI) C(n, k) = (k<=n)*binomial(2*n-k, n)*(k+1)/(n+1); %o A228335 T(n, k) = matdet(matrix(2, 2, i, j, C(n+k+i, 2*k+j))); \\ _Michel Marcus_, Feb 13 2014 %Y A228335 Cf. A033184, A228334, A228336, A228337. %K A228335 nonn,tabl %O A228335 0,4 %A A228335 _N. J. A. Sloane_, Aug 26 2013 %E A228335 More terms from _Michel Marcus_, Feb 13 2014 %E A228335 A-number for Catalan triangle changed by _Michel Marcus_, Feb 13 2014