cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228343 The number of ordered trees with bicolored single edges on the boundary.

This page as a plain text file.
%I A228343 #27 Dec 01 2022 07:34:02
%S A228343 1,2,5,15,50,175,625,2251,8142,29544,107538,392726,1439204,5292833,
%T A228343 19533241,72333107,268728214,1001448308,3742866166,14026901282,
%U A228343 52701685564,198481560878,749170991770,2833635556670,10738689128460,40770816357920,155056284790340,590644481896972
%N A228343 The number of ordered trees with bicolored single edges on the boundary.
%H A228343 Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Davenport/dav3.html">The Boundary of Ordered Trees</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8; <a href="http://faculty.valpo.edu/lpudwell/papers/treeboundary.pdf">preprint</a>, 2014.
%F A228343 G.f.: (1+x^2*C^5)/(1-2*x) where C is the Catalan number generating function (cf. A000108).
%F A228343 D-finite with recurrence: -(n+3)*(n-2)*a(n) +6*(n^2-2)*a(n-1) -4*n*(2*n-1)*a(n-2)=0. - _R. J. Mathar_, Aug 25 2013
%F A228343 a(n) -2*a(n-1) = A000344(n). - _R. J. Mathar_, Aug 25 2013
%F A228343 a(n) ~ 5 * 2^(2*n+1) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Jan 31 2014
%e A228343 When n=3 the five trees contribute as follows: UUUDDD 8; UUDDUD, UDUUDD,UUDUDD 2 each; and UDUDUD just 1.
%t A228343 Table[FullSimplify[I*2^n - 5/2*Gamma[3+2*n] * HypergeometricPFQRegularized[{1,3/2+n,2+n},{n,5+n},2]],{n,0,20}] (* _Vaclav Kotesovec_, Jan 31 2014 *)
%o A228343 (PARI)
%o A228343 x = 'x + O('x^66);
%o A228343 C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
%o A228343 gf = (1+x^2*C^5)/(1-2*x);
%o A228343 Vec(gf) \\ _Joerg Arndt_, Aug 21 2013
%Y A228343 Cf. A000108, A228197.
%K A228343 nonn
%O A228343 0,2
%A A228343 _Louis Shapiro_, Aug 20 2013