cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228347 Triangle of regions and compositions of the positive integers (see Comments lines for definition).

This page as a plain text file.
%I A228347 #13 Oct 22 2013 12:37:36
%S A228347 1,1,2,0,0,1,1,1,2,3,0,0,0,0,1,0,0,0,0,1,2,0,0,0,0,0,0,1,1,1,1,1,2,2,
%T A228347 3,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0,
%U A228347 0,0,0,0,0,0,1,1,2,3,0,0,0,0,0,0,0,0
%N A228347 Triangle of regions and compositions of the positive integers (see Comments lines for definition).
%C A228347 Triangle read by rows in which row n lists A129760(n) zeros followed by the A006519(n) elements of the row A001511(n) of triangle A090996, n >= 1.
%C A228347 The equivalent sequence for partitions is A186114.
%e A228347 ----------------------------------------------------------
%e A228347 .             Diagram                Triangle
%e A228347 Compositions    of            of compositions (rows)
%e A228347 of 5          regions          and regions (columns)
%e A228347 ----------------------------------------------------------
%e A228347 .            _ _ _ _ _
%e A228347 5           |_        |                                 5
%e A228347 1+4         |_|_      |                               1 4
%e A228347 2+3         |_  |     |                             2 0 3
%e A228347 1+1+3       |_|_|_    |                           1 1 0 3
%e A228347 3+2         |_    |   |                         3 0 0 0 2
%e A228347 1+2+2       |_|_  |   |                       1 2 0 0 0 2
%e A228347 2+1+2       |_  | |   |                     2 0 1 0 0 0 2
%e A228347 1+1+1+2     |_|_|_|_  |                   1 1 0 1 0 0 0 2
%e A228347 4+1         |_      | |                 4 0 0 0 0 0 0 0 1
%e A228347 1+3+1       |_|_    | |               1 3 0 0 0 0 0 0 0 1
%e A228347 2+2+1       |_  |   | |             2 0 2 0 0 0 0 0 0 0 1
%e A228347 1+1+2+1     |_|_|_  | |           1 1 0 2 0 0 0 0 0 0 0 1
%e A228347 3+1+1       |_    | | |         3 0 0 0 1 0 0 0 0 0 0 0 1
%e A228347 1+2+1+1     |_|_  | | |       1 2 0 0 0 1 0 0 0 0 0 0 0 1
%e A228347 2+1+1+1     |_  | | | |     2 0 1 0 0 0 1 0 0 0 0 0 0 0 1
%e A228347 1+1+1+1+1   |_|_|_|_|_|   1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
%e A228347 .
%e A228347 For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th column are the parts of the n-th composition of k, with compositions in colexicographic order.
%e A228347 Triangle begins:
%e A228347 1;
%e A228347 1,2;
%e A228347 0,0,1;
%e A228347 1,1,2,3;
%e A228347 0,0,0,0,1;
%e A228347 0,0,0,0,1,2;
%e A228347 0,0,0,0,0,0,1;
%e A228347 1,1,1,1,2,2,3,4;
%e A228347 0,0,0,0,0,0,0,0,1;
%e A228347 0,0,0,0,0,0,0,0,1,2;
%e A228347 0,0,0,0,0,0,0,0,0,0,1;
%e A228347 0,0,0,0,0,0,0,0,1,1,2,3;
%e A228347 0,0,0,0,0,0,0,0,0,0,0,0,1;
%e A228347 0,0,0,0,0,0,0,0,0,0,0,0,1,2;
%e A228347 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
%e A228347 1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5;
%e A228347 ...
%Y A228347 Mirror of A228348. Column 1 is A036987. Also column 1 gives A209229, n >= 1. Right border gives A001511. Positive terms give A228349.
%Y A228347 Cf. A001792, A001787, A006519, A011782, A065120, A096996, A129760, A186114, A187816, A187818, A206437, A228350, A228351, A228366, A228367, A228370, A228371, A228525, A228526.
%K A228347 nonn,tabl
%O A228347 1,3
%A A228347 _Omar E. Pol_, Aug 26 2013