This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228347 #13 Oct 22 2013 12:37:36 %S A228347 1,1,2,0,0,1,1,1,2,3,0,0,0,0,1,0,0,0,0,1,2,0,0,0,0,0,0,1,1,1,1,1,2,2, %T A228347 3,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,0,0,1,0,0, %U A228347 0,0,0,0,0,0,1,1,2,3,0,0,0,0,0,0,0,0 %N A228347 Triangle of regions and compositions of the positive integers (see Comments lines for definition). %C A228347 Triangle read by rows in which row n lists A129760(n) zeros followed by the A006519(n) elements of the row A001511(n) of triangle A090996, n >= 1. %C A228347 The equivalent sequence for partitions is A186114. %e A228347 ---------------------------------------------------------- %e A228347 . Diagram Triangle %e A228347 Compositions of of compositions (rows) %e A228347 of 5 regions and regions (columns) %e A228347 ---------------------------------------------------------- %e A228347 . _ _ _ _ _ %e A228347 5 |_ | 5 %e A228347 1+4 |_|_ | 1 4 %e A228347 2+3 |_ | | 2 0 3 %e A228347 1+1+3 |_|_|_ | 1 1 0 3 %e A228347 3+2 |_ | | 3 0 0 0 2 %e A228347 1+2+2 |_|_ | | 1 2 0 0 0 2 %e A228347 2+1+2 |_ | | | 2 0 1 0 0 0 2 %e A228347 1+1+1+2 |_|_|_|_ | 1 1 0 1 0 0 0 2 %e A228347 4+1 |_ | | 4 0 0 0 0 0 0 0 1 %e A228347 1+3+1 |_|_ | | 1 3 0 0 0 0 0 0 0 1 %e A228347 2+2+1 |_ | | | 2 0 2 0 0 0 0 0 0 0 1 %e A228347 1+1+2+1 |_|_|_ | | 1 1 0 2 0 0 0 0 0 0 0 1 %e A228347 3+1+1 |_ | | | 3 0 0 0 1 0 0 0 0 0 0 0 1 %e A228347 1+2+1+1 |_|_ | | | 1 2 0 0 0 1 0 0 0 0 0 0 0 1 %e A228347 2+1+1+1 |_ | | | | 2 0 1 0 0 0 1 0 0 0 0 0 0 0 1 %e A228347 1+1+1+1+1 |_|_|_|_|_| 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 %e A228347 . %e A228347 For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th column are the parts of the n-th composition of k, with compositions in colexicographic order. %e A228347 Triangle begins: %e A228347 1; %e A228347 1,2; %e A228347 0,0,1; %e A228347 1,1,2,3; %e A228347 0,0,0,0,1; %e A228347 0,0,0,0,1,2; %e A228347 0,0,0,0,0,0,1; %e A228347 1,1,1,1,2,2,3,4; %e A228347 0,0,0,0,0,0,0,0,1; %e A228347 0,0,0,0,0,0,0,0,1,2; %e A228347 0,0,0,0,0,0,0,0,0,0,1; %e A228347 0,0,0,0,0,0,0,0,1,1,2,3; %e A228347 0,0,0,0,0,0,0,0,0,0,0,0,1; %e A228347 0,0,0,0,0,0,0,0,0,0,0,0,1,2; %e A228347 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; %e A228347 1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5; %e A228347 ... %Y A228347 Mirror of A228348. Column 1 is A036987. Also column 1 gives A209229, n >= 1. Right border gives A001511. Positive terms give A228349. %Y A228347 Cf. A001792, A001787, A006519, A011782, A065120, A096996, A129760, A186114, A187816, A187818, A206437, A228350, A228351, A228366, A228367, A228370, A228371, A228525, A228526. %K A228347 nonn,tabl %O A228347 1,3 %A A228347 _Omar E. Pol_, Aug 26 2013