cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228348 Triangle of regions and compositions of the positive integers (see Comments lines for definition).

This page as a plain text file.
%I A228348 #15 Oct 19 2013 03:20:17
%S A228348 1,2,1,1,0,0,3,2,1,1,1,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,4,3,2,2,1,1,
%T A228348 1,1,1,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,2,
%U A228348 1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0
%N A228348 Triangle of regions and compositions of the positive integers (see Comments lines for definition).
%C A228348 Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A065120 followed by A129760(n) zeros, n >= 1.
%C A228348 The equivalent sequence for integer partitions is A193870.
%e A228348 ----------------------------------------------------------
%e A228348 .             Diagram                Triangle
%e A228348 Compositions    of            of compositions (rows)
%e A228348 of 5          regions          and regions (columns)
%e A228348 ----------------------------------------------------------
%e A228348 .            _ _ _ _ _
%e A228348 5           |_        |                                 5
%e A228348 1+4         |_|_      |                               1 4
%e A228348 2+3         |_  |     |                             2 0 3
%e A228348 1+1+3       |_|_|_    |                           1 1 0 3
%e A228348 3+2         |_    |   |                         3 0 0 0 2
%e A228348 1+2+2       |_|_  |   |                       1 2 0 0 0 2
%e A228348 2+1+2       |_  | |   |                     2 0 1 0 0 0 2
%e A228348 1+1+1+2     |_|_|_|_  |                   1 1 0 1 0 0 0 2
%e A228348 4+1         |_      | |                 4 0 0 0 0 0 0 0 1
%e A228348 1+3+1       |_|_    | |               1 3 0 0 0 0 0 0 0 1
%e A228348 2+2+1       |_  |   | |             2 0 2 0 0 0 0 0 0 0 1
%e A228348 1+1+2+1     |_|_|_  | |           1 1 0 2 0 0 0 0 0 0 0 1
%e A228348 3+1+1       |_    | | |         3 0 0 0 1 0 0 0 0 0 0 0 1
%e A228348 1+2+1+1     |_|_  | | |       1 2 0 0 0 1 0 0 0 0 0 0 0 1
%e A228348 2+1+1+1     |_  | | | |     2 0 1 0 0 0 1 0 0 0 0 0 0 0 1
%e A228348 1+1+1+1+1   |_|_|_|_|_|   1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
%e A228348 .
%e A228348 For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th diagonal are the parts of the n-th composition of k, with compositions in colexicographic order.
%e A228348 Triangle begins:
%e A228348 1;
%e A228348 2,1;
%e A228348 1,0,0;
%e A228348 3,2,1,1;
%e A228348 1,0,0,0,0;
%e A228348 2,1,0,0,0,0;
%e A228348 1,0,0,0,0,0,0;
%e A228348 4,3,2,2,1,1,1,1;
%e A228348 1,0,0,0,0,0,0,0,0;
%e A228348 2,1,0,0,0,0,0,0,0,0;
%e A228348 1,0,0,0,0,0,0,0,0,0,0;
%e A228348 3,2,1,1,0,0,0,0,0,0,0,0;
%e A228348 1,0,0,0,0,0,0,0,0,0,0,0,0;
%e A228348 2,1,0,0,0,0,0,0,0,0,0,0,0,0;
%e A228348 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
%e A228348 5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1;
%e A228348 ...
%Y A228348 Mirror of A228347. Column 1 is A001511. Right border gives A036987. Also right border gives A209229, n >= 1. Positive terms give A228350.
%Y A228348 Cf. A001792, A001787, A006519, A011782, A065120, A129760, A187816, A187818, A193870, A206437, A228349, A228351, A228366, A228367, A228370, A228371, A228525, A228526.
%K A228348 nonn,tabl
%O A228348 1,2
%A A228348 _Omar E. Pol_, Aug 21 2013