This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228348 #15 Oct 19 2013 03:20:17 %S A228348 1,2,1,1,0,0,3,2,1,1,1,0,0,0,0,2,1,0,0,0,0,1,0,0,0,0,0,0,4,3,2,2,1,1, %T A228348 1,1,1,0,0,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,2, %U A228348 1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 %N A228348 Triangle of regions and compositions of the positive integers (see Comments lines for definition). %C A228348 Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A065120 followed by A129760(n) zeros, n >= 1. %C A228348 The equivalent sequence for integer partitions is A193870. %e A228348 ---------------------------------------------------------- %e A228348 . Diagram Triangle %e A228348 Compositions of of compositions (rows) %e A228348 of 5 regions and regions (columns) %e A228348 ---------------------------------------------------------- %e A228348 . _ _ _ _ _ %e A228348 5 |_ | 5 %e A228348 1+4 |_|_ | 1 4 %e A228348 2+3 |_ | | 2 0 3 %e A228348 1+1+3 |_|_|_ | 1 1 0 3 %e A228348 3+2 |_ | | 3 0 0 0 2 %e A228348 1+2+2 |_|_ | | 1 2 0 0 0 2 %e A228348 2+1+2 |_ | | | 2 0 1 0 0 0 2 %e A228348 1+1+1+2 |_|_|_|_ | 1 1 0 1 0 0 0 2 %e A228348 4+1 |_ | | 4 0 0 0 0 0 0 0 1 %e A228348 1+3+1 |_|_ | | 1 3 0 0 0 0 0 0 0 1 %e A228348 2+2+1 |_ | | | 2 0 2 0 0 0 0 0 0 0 1 %e A228348 1+1+2+1 |_|_|_ | | 1 1 0 2 0 0 0 0 0 0 0 1 %e A228348 3+1+1 |_ | | | 3 0 0 0 1 0 0 0 0 0 0 0 1 %e A228348 1+2+1+1 |_|_ | | | 1 2 0 0 0 1 0 0 0 0 0 0 0 1 %e A228348 2+1+1+1 |_ | | | | 2 0 1 0 0 0 1 0 0 0 0 0 0 0 1 %e A228348 1+1+1+1+1 |_|_|_|_|_| 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 %e A228348 . %e A228348 For the positive integer k consider the first 2^(k-1) rows of triangle, as shown below. The positive terms of the n-th row are the parts of the n-th region of the diagram of regions of the set of compositions of k. The positive terms of the n-th diagonal are the parts of the n-th composition of k, with compositions in colexicographic order. %e A228348 Triangle begins: %e A228348 1; %e A228348 2,1; %e A228348 1,0,0; %e A228348 3,2,1,1; %e A228348 1,0,0,0,0; %e A228348 2,1,0,0,0,0; %e A228348 1,0,0,0,0,0,0; %e A228348 4,3,2,2,1,1,1,1; %e A228348 1,0,0,0,0,0,0,0,0; %e A228348 2,1,0,0,0,0,0,0,0,0; %e A228348 1,0,0,0,0,0,0,0,0,0,0; %e A228348 3,2,1,1,0,0,0,0,0,0,0,0; %e A228348 1,0,0,0,0,0,0,0,0,0,0,0,0; %e A228348 2,1,0,0,0,0,0,0,0,0,0,0,0,0; %e A228348 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0; %e A228348 5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1; %e A228348 ... %Y A228348 Mirror of A228347. Column 1 is A001511. Right border gives A036987. Also right border gives A209229, n >= 1. Positive terms give A228350. %Y A228348 Cf. A001792, A001787, A006519, A011782, A065120, A129760, A187816, A187818, A193870, A206437, A228349, A228351, A228366, A228367, A228370, A228371, A228525, A228526. %K A228348 nonn,tabl %O A228348 1,2 %A A228348 _Omar E. Pol_, Aug 21 2013