This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228349 #19 May 24 2017 02:39:54 %S A228349 1,1,2,1,1,1,2,3,1,1,2,1,1,1,1,1,2,2,3,4,1,1,2,1,1,1,2,3,1,1,2,1,1,1, %T A228349 1,1,1,1,1,1,2,2,2,2,3,3,4,5,1,1,2,1,1,1,2,3,1,1,2,1,1,1,1,1,2,2,3,4, %U A228349 1,1,2,1,1,1,2,3,1,1,2,1,1,1,1,1,1,1 %N A228349 Triangle read by rows: T(j,k) is the k-th part in nondecreasing order of the j-th region of the set of compositions (ordered partitions) of n in colexicographic order, if 1<=j<=2^(n-1) and 1<=k<=A006519(j). %C A228349 Triangle read by rows in which row n lists the A006519(n) elements of the row A001511(n) of triangle A090996, n >= 1. %C A228349 The equivalent sequence for partitions is A220482. %H A228349 Michael De Vlieger, <a href="/A228349/b228349.txt">Table of n, a(n) for n = 1..13312</a> (rows 1 <= n <= 2^11 = 2048). %e A228349 ---------------------------------------------------------- %e A228349 . Diagram Triangle %e A228349 Compositions of of compositions (rows) %e A228349 of 5 regions and regions (columns) %e A228349 ---------------------------------------------------------- %e A228349 . _ _ _ _ _ %e A228349 5 |_ | 5 %e A228349 1+4 |_|_ | 1 4 %e A228349 2+3 |_ | | 2 3 %e A228349 1+1+3 |_|_|_ | 1 1 3 %e A228349 3+2 |_ | | 3 2 %e A228349 1+2+2 |_|_ | | 1 2 2 %e A228349 2+1+2 |_ | | | 2 1 2 %e A228349 1+1+1+2 |_|_|_|_ | 1 1 1 2 %e A228349 4+1 |_ | | 4 1 %e A228349 1+3+1 |_|_ | | 1 3 1 %e A228349 2+2+1 |_ | | | 2 2 1 %e A228349 1+1+2+1 |_|_|_ | | 1 1 2 1 %e A228349 3+1+1 |_ | | | 3 1 1 %e A228349 1+2+1+1 |_|_ | | | 1 2 1 1 %e A228349 2+1+1+1 |_ | | | | 2 1 1 1 %e A228349 1+1+1+1+1 |_|_|_|_|_| 1 1 1 1 1 %e A228349 . %e A228349 Written as an irregular triangle in which row n lists the parts of the n-th region the sequence begins: %e A228349 1; %e A228349 1,2; %e A228349 1; %e A228349 1,1,2,3; %e A228349 1; %e A228349 1,2; %e A228349 1; %e A228349 1,1,1,1,2,2,3,4; %e A228349 1; %e A228349 1,2; %e A228349 1; %e A228349 1,1,2,3; %e A228349 1; %e A228349 1,2; %e A228349 1; %e A228349 1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5; %e A228349 ... %e A228349 Alternative interpretation of this sequence: %e A228349 Triangle read by rows in which row r lists the regions of the last section of the set of compositions of r: %e A228349 [1]; %e A228349 [1,2]; %e A228349 [1],[1,1,2,3]; %e A228349 [1],[1,2],[1],[1,1,1,1,2,2,3,4]; %e A228349 [1],[1,2],[1],[1,1,2,3],[1],[1,2],[1],[1,1,1,1,1,1,1,1,2,2,2,2,3,3,4,5]; %t A228349 Table[Map[Length@ TakeWhile[IntegerDigits[#, 2], # == 1 &] &, Range[2^(# - 1), 2^# - 1]] &@ IntegerExponent[2 n, 2], {n, 32}] // Flatten (* _Michael De Vlieger_, May 23 2017 *) %Y A228349 Main triangle: Right border gives A001511. Row j has length A006519(j). Row sums give A038712. %Y A228349 Cf. A001787, A001792, A011782, A029837, A045623, A065120, A070939, A090996, A186114, A187816, A187818, A206437, A220482, A228347, A228348, A228350, A228351, A228366, A228367, A228370, A228371, A228525, A228526. %K A228349 nonn,tabf %O A228349 1,3 %A A228349 _Omar E. Pol_, Aug 26 2013