This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228354 #67 Sep 18 2013 12:32:17 %S A228354 1,2,4,6,8,12,16,22,24,28,32,44,48,56,64,86,88,92,96,112,120,128,172, %T A228354 176,184,192,220,224,240,256,342,344,348,352,368,376,384,440,448,480, %U A228354 496,512,684,688,696,704,732,736,752,768,880,888,896,960,992,1024 %N A228354 Indices (k) of partitions in the list of compositions of j in colexicographic order, if 1<=k<=2^(j-1), j>=1. %C A228354 Also where records occur in A228720. %C A228354 Also triangle read by rows in which row j lists the indices of the partitions of j into parts greater than the smallest part of the partitions of j-1, in the list of compositions of j in colexicographic order. See A228525 and A211992. %C A228354 The total number of terms in the first j rows of triangle is A000041(j), j >= 1. %C A228354 Row j has length A187219(j). %C A228354 Right border gives A000079. %F A228354 a(n) = 1 + A194602(n-1). %F A228354 A001511(a(n)) = A141285(n). %F A228354 A000120(a(n)-1) = A207034(n). %e A228354 For j = 5 consider the list of compositions of 5 in colexicographic order (see A228525). The indices of the partitions are 1, 2, 4, 6, 8, 12, 16 which are the first A000041(5) terms of this sequence, see below: %e A228354 --------------------------------------------------------- %e A228354 . Compositions Partitions %e A228354 k of 5 of 5 n a(n) %e A228354 --------------------------------------------------------- %e A228354 1 1+1+1+1+1 * ............... * 1+1+1+1+1 1 1 %e A228354 2 2+1+1+1 * ............... * 2+1+1+1 2 2 %e A228354 3 1+2+1+1 ........... * 3+1+1 3 4 %e A228354 4 3+1+1 * .../ .......... * 2+2+1 4 6 %e A228354 5 1+1+2+1 / ......... * 4+1 5 8 %e A228354 6 2+2+1 * .../ / ...... * 3+2 6 12 %e A228354 7 1+3+1 / / ... * 5 7 16 %e A228354 8 4+1 * .../ / / %e A228354 9 1+1+1+2 / / %e A228354 10 2+1+2 / / %e A228354 11 1+2+2 / / %e A228354 12 3+2 * .../ / %e A228354 13 1+1+3 / %e A228354 14 2+3 / %e A228354 15 1+4 / %e A228354 16 5 * .../ %e A228354 . %e A228354 Written as an irregular triangle the sequence begins: %e A228354 1; %e A228354 2; %e A228354 4; %e A228354 6,8; %e A228354 12,16; %e A228354 22,24,28,32; %e A228354 44,48,56,64; %e A228354 86,88,92,96,112,120,128; %e A228354 172,176,184,192,220,224,240,256; %e A228354 342,344,348,352,368,376,384,440,448,480,496,512; %e A228354 684,688,696,704,732,736,752,768,880,888,896,960,992,1024; %e A228354 ... %Y A228354 Cf. A000041, A187219, A211992, A228354, A228525, A228720. %K A228354 nonn,tabf %O A228354 1,2 %A A228354 _Omar E. Pol_, Aug 20 2013