cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228367 n-th element of the ruler function plus the highest power of 2 dividing n.

This page as a plain text file.
%I A228367 #40 Jul 16 2022 01:04:36
%S A228367 2,4,2,7,2,4,2,12,2,4,2,7,2,4,2,21,2,4,2,7,2,4,2,12,2,4,2,7,2,4,2,38,
%T A228367 2,4,2,7,2,4,2,12,2,4,2,7,2,4,2,21,2,4,2,7,2,4,2,12,2,4,2,7,2,4,2,71,
%U A228367 2,4,2,7,2,4,2,12,2,4,2,7,2,4,2,21,2,4,2,7
%N A228367 n-th element of the ruler function plus the highest power of 2 dividing n.
%C A228367 a(n) is also the length of the n-th pair of orthogonal line segments in a diagram of compositions, see example.
%C A228367 a(n) is also the largest part plus the number of parts of the n-th region of the mentioned diagram (if the axes both "x" and "y" are included in the diagram).
%C A228367 a(n) is also the number of toothpicks added at n-th stage to the structure of A228366. Essentially the first differences of A228366.
%C A228367 The equivalent sequence for partitions is A207779.
%H A228367 Antti Karttunen, <a href="/A228367/b228367.txt">Table of n, a(n) for n = 1..16383</a>
%H A228367 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H A228367 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a>
%F A228367 a(n) = A001511(n) + A006519(n).
%e A228367 Illustration of initial terms (n = 1..16) using a diagram of compositions in which A001511(n) is the length of the horizontal line segment in row n and A006519(n) is the length of the vertical line segment ending in row n. Hence a(n) is the length of the n-th pair of orthogonal line segments. Also counting both the x-axis and the y-axis we have that A001511(n) is also the largest part of the n-th region of the diagram and A006519(n) is also the number of parts of the n-th region of the diagram, see below.
%e A228367 ---------------------------------------------------------
%e A228367 .                Diagram of
%e A228367 n   A001511(n)  compositions   A006519(n)    a(n)
%e A228367 ---------------------------------------------------------
%e A228367 1       1        _| | | | |        1          2
%e A228367 2       2        _ _| | | |        2          4
%e A228367 3       1        _|   | | |        1          2
%e A228367 4       3        _ _ _| | |        4          7
%e A228367 5       1        _| |   | |        1          2
%e A228367 6       2        _ _|   | |        2          4
%e A228367 7       1        _|     | |        1          2
%e A228367 8       4        _ _ _ _| |        8         12
%e A228367 9       1        _| | |   |        1          2
%e A228367 10      2        _ _| |   |        2          4
%e A228367 11      1        _|   |   |        1          2
%e A228367 12      3        _ _ _|   |        4          7
%e A228367 13      1        _| |     |        1          2
%e A228367 14      2        _ _|     |        2          4
%e A228367 15      1        _|       |        1          2
%e A228367 16      5        _ _ _ _ _|       16         21
%e A228367 ...
%e A228367 If written as an irregular triangle the sequence begins:
%e A228367   2;
%e A228367   4;
%e A228367   2, 7;
%e A228367   2, 4, 2, 12;
%e A228367   2, 4, 2, 7, 2, 4, 2, 21;
%e A228367   2, 4, 2, 7, 2, 4, 2, 12, 2, 4, 2, 7, 2, 4, 2, 38;
%e A228367   ...
%e A228367 Row lengths is A011782. Right border gives A005126.
%e A228367 Counting both the x-axis and the y-axis we have that A038712(n) is the area (or the number of cells) of the n-th region of the diagram. Note that adding only the x-axis to the diagram we have a tree. - _Omar E. Pol_, Nov 07 2018
%t A228367 Array[1 + # + 2^# &[IntegerExponent[#, 2]] &, 84] (* _Michael De Vlieger_, Nov 06 2018 *)
%o A228367 (PARI) A228367(n) = (1 + valuation(n,2) + 2^valuation(n,2)); \\ _Antti Karttunen_, Nov 06 2018
%o A228367 (Python)
%o A228367 def A228367(n): return (m:=n&-n)+m.bit_length() # _Chai Wah Wu_, Jul 14 2022
%Y A228367 Cf. A001511, A001792, A005126, A006519, A011782, A038712, A139250, A139251, A207779, A228366.
%K A228367 nonn,tabf
%O A228367 1,1
%A A228367 _Omar E. Pol_, Aug 22 2013