This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228368 #32 Jul 16 2022 01:04:45 %S A228368 0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0,0,-11,0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0, %T A228368 0,-26,0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0,0,-11,0,0,0,-1,0,0,0,-4,0,0,0, %U A228368 -1,0,0,0,-57,0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0,0,-11,0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0,0,-26 %N A228368 Difference between the n-th element of the ruler function and the highest power of 2 dividing n. %C A228368 Also rank of the n-th region of the diagram of compositions of j, if 1 <= n <= 2^(j-1), see example. %C A228368 Here the rank of a region is defined as the largest part minus the number of parts (similar to the Dyson's rank of a partition). %C A228368 The equivalent sequence for integer partitions is A194447. %C A228368 Also triangle read by rows in which T(j,k) is the rank of the k-th region of the j-th section of the set of compositions in colexicographic order of any integer >= j. See A228366. %H A228368 Antti Karttunen, <a href="/A228368/b228368.txt">Table of n, a(n) for n = 1..65537</a> %F A228368 a(n) = A001511(n) - A006519(n). %F A228368 a(4n-3) = a(4n-2) = a(4n-1) = 0. a(4n) = A001511(4n) - A006519(4n). %e A228368 Illustration of initial terms (n = 1..16): %e A228368 ----------------------------------------------- %e A228368 . Largest Number of %e A228368 . Diagram of part of parts of %e A228368 . compositions region n region n %e A228368 ----------------------------------------------- %e A228368 n A001511(n) A006519(n) a(n) %e A228368 ----------------------------------------------- %e A228368 . %e A228368 1 _| | | | | 1 1 0 %e A228368 2 _ _| | | | 2 2 0 %e A228368 3 _| | | | 1 1 0 %e A228368 4 _ _ _| | | 3 4 -1 %e A228368 5 _| | | | 1 1 0 %e A228368 6 _ _| | | 2 2 0 %e A228368 7 _| | | 1 1 0 %e A228368 8 _ _ _ _| | 4 8 -4 %e A228368 9 _| | | | 1 1 0 %e A228368 10 _ _| | | 2 2 0 %e A228368 11 _| | | 1 1 0 %e A228368 12 _ _ _| | 3 4 -1 %e A228368 13 _| | | 1 1 0 %e A228368 14 _ _| | 2 2 0 %e A228368 15 _| | 1 1 0 %e A228368 16 _ _ _ _ _| 5 16 -11 %e A228368 . %e A228368 Written as an array read by rows with four columns the first three columns contain only zeros. %e A228368 0, 0, 0, -1; %e A228368 0, 0, 0, -4; %e A228368 0, 0, 0, -1; %e A228368 0, 0, 0, -11; %e A228368 0, 0, 0, -1; %e A228368 0, 0, 0, -4; %e A228368 0, 0, 0, -1; %e A228368 0, 0, 0, -26; %e A228368 ... %e A228368 Written as a triangle T(j,k) the sequence begins: %e A228368 0; %e A228368 0; %e A228368 0,-1; %e A228368 0,0,0,-4; %e A228368 0,0,0,-1,0,0,0,-11; %e A228368 0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0,0,-26; %e A228368 0,0,0,-1,0,0,0,-4,0,0,0,-1,0,0,0,-11,0,0,0,-1,0,0,0,-4,0, 0,0,-1,0,0,0,-57; %e A228368 ... %e A228368 Row lengths give A011782. %o A228368 (Python) %o A228368 def A228368(n): return (m:=n&-n).bit_length()-m # _Chai Wah Wu_, Jul 14 2022 %Y A228368 Cf. A001511, A006519, A011782, A141285, A194446, A194447, A228366, A228367, A228525. %K A228368 sign,tabf %O A228368 1,8 %A A228368 _Omar E. Pol_, Aug 22 2013