This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228369 #70 Dec 14 2017 09:23:16 %S A228369 1,1,1,2,1,1,1,1,2,2,1,3,1,1,1,1,1,1,2,1,2,1,1,3,2,1,1,2,2,3,1,4,1,1, %T A228369 1,1,1,1,1,1,2,1,1,2,1,1,1,3,1,2,1,1,1,2,2,1,3,1,1,4,2,1,1,1,2,1,2,2, %U A228369 2,1,2,3,3,1,1,3,2,4,1,5,1,1,1,1,1,1 %N A228369 Triangle read by rows in which row n lists the compositions (ordered partitions) of n in lexicographic order. %C A228369 The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is lexicographic. - _Joerg Arndt_, Sep 02 2013 %C A228369 The equivalent sequence for partitions is A026791. %C A228369 Row n has length A001792(n-1). %C A228369 Row sums give A001787, n >= 1. %C A228369 The m-th composition has length A008687(m+1), m >= 1. - _Andrey Zabolotskiy_, Jul 19 2017 %H A228369 Joerg Arndt, <a href="/A228369/b228369.txt">Table of n, a(n) for n = 1..10000</a> %e A228369 Illustration of initial terms: %e A228369 ----------------------------------- %e A228369 n j Diagram Composition j %e A228369 ----------------------------------- %e A228369 . _ %e A228369 1 1 |_| 1; %e A228369 . _ _ %e A228369 2 1 | |_| 1, 1, %e A228369 2 2 |_ _| 2; %e A228369 . _ _ _ %e A228369 3 1 | | |_| 1, 1, 1, %e A228369 3 2 | |_ _| 1, 2, %e A228369 3 3 | |_| 2, 1, %e A228369 3 4 |_ _ _| 3; %e A228369 . _ _ _ _ %e A228369 4 1 | | | |_| 1, 1, 1, 1, %e A228369 4 2 | | |_ _| 1, 1, 2, %e A228369 4 3 | | |_| 1, 2, 1, %e A228369 4 4 | |_ _ _| 1, 3, %e A228369 4 5 | | |_| 2, 1, 1, %e A228369 4 6 | |_ _| 2, 2, %e A228369 4 7 | |_| 3, 1, %e A228369 4 8 |_ _ _ _| 4; %e A228369 . %e A228369 Triangle begins: %e A228369 [1]; %e A228369 [1,1],[2]; %e A228369 [1,1,1],[1,2],[2,1],[3]; %e A228369 [1,1,1,1],[1,1,2],[1,2,1],[1,3],[2,1,1],[2,2],[3,1],[4]; %e A228369 [1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,1,3],[1,2,1,1],[1,2,2],[1,3,1],[1,4],[2,1,1,1],[2,1,2],[2,2,1],[2,3],[3,1,1],[3,2],[4,1],[5]; %e A228369 ... %t A228369 Table[Sort[Join@@Permutations/@IntegerPartitions[n],OrderedQ[PadRight[{#1,#2}]]&],{n,5}] (* _Gus Wiseman_, Dec 14 2017 *) %o A228369 (PARI) %o A228369 gen_comp(n)= %o A228369 { /* Generate compositions of n as lists of parts (order is lex): */ %o A228369 my(ct = 0); %o A228369 my(m, z, pt); %o A228369 \\ init: %o A228369 my( a = vector(n, j, 1) ); %o A228369 m = n; %o A228369 while ( 1, %o A228369 ct += 1; %o A228369 pt = vector(m, j, a[j]); %o A228369 /* for A228369 print composition: */ %o A228369 for (j=1, m, print1(pt[j],", ") ); %o A228369 \\ /* for A228525 print reversed (order is colex): */ %o A228369 \\ forstep (j=m, 1, -1, print1(pt[j],", ") ); %o A228369 if ( m<=1, return(ct) ); \\ current is last %o A228369 a[m-1] += 1; %o A228369 z = a[m] - 2; %o A228369 a[m] = 1; %o A228369 m += z; %o A228369 ); %o A228369 return(ct); %o A228369 } %o A228369 for(n=1, 12, gen_comp(n) ); %o A228369 \\ _Joerg Arndt_, Sep 02 2013 %o A228369 (Haskell) %o A228369 a228369 n = a228369_list !! (n - 1) %o A228369 a228369_list = concatMap a228369_row [1..] %o A228369 a228369_row 0 = [] %o A228369 a228369_row n %o A228369 | 2^k == 2 * n + 2 = [k - 1] %o A228369 | otherwise = a228369_row (n `div` 2^k) ++ [k] where %o A228369 k = a007814 (n + 1) + 1 %o A228369 -- _Peter Kagey_, Jun 27 2016 %o A228369 (Python) %o A228369 a = [[[]], [[1]]] %o A228369 for s in range(2, 9): %o A228369 a.append([]) %o A228369 for k in range(1, s+1): %o A228369 for ss in a[s-k]: %o A228369 a[-1].append([k]+ss) %o A228369 print(a) %o A228369 # _Andrey Zabolotskiy_, Jul 19 2017 %Y A228369 Cf. A001511, A026791, A066099, A101211, A124734, A228351, A228525, A281013. %K A228369 nonn,tabf %O A228369 1,4 %A A228369 _Omar E. Pol_, Aug 28 2013