cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228370 Toothpick sequence from a diagram of compositions of the positive integers (see Comments lines for definition).

This page as a plain text file.
%I A228370 #33 Jul 14 2022 08:55:48
%S A228370 0,1,2,4,6,7,8,11,15,16,17,19,21,22,23,27,35,36,37,39,41,42,43,46,50,
%T A228370 51,52,54,56,57,58,63,79,80,81,83,85,86,87,90,94,95,96,98,100,101,102,
%U A228370 106,114,115,116,118,120,121,122,125,129,130,131,133,135,136,137,143,175
%N A228370 Toothpick sequence from a diagram of compositions of the positive integers (see Comments lines for definition).
%C A228370 In order to construct this sequence we use the following rules:
%C A228370 We start in the first quadrant of the square grid with no toothpicks, so a(0) = 0.
%C A228370 If n is odd then at stage n we place the smallest possible number of toothpicks of length 1 connected by their endpoints in horizontal direction starting from the grid point (0, (n+1)/2) such that the x-coordinate of the exposed endpoint of the last toothpick is not equal to the x-coordinate of any outer corner of the structure.
%C A228370 If n is even then at stage n we place toothpicks of length 1 connected by their endpoints in vertical direction, starting from the exposed toothpick endpoint, downward up to touch the structure or up to touch the x-axis.
%C A228370 Note that the number of toothpick of added at stage (n+1)/2 in horizontal direction is also A001511(n) and the number of toothpicks added at stage n/2 in vertical direction is also A006519(n).
%C A228370 The sequence gives the number of toothpicks after n stages. A228371 (the first differences) gives the number of toothpicks added at the n-th stage.
%C A228370 After 2^k stages a new section of the structure is completed, so the structure can be interpreted as a diagram of the 2^(k-1) compositions of k in colexicographic order, if k >= 1 (see A228525). The infinite diagram can be interpreted as a table of compositions of the positive integers.
%C A228370 The equivalent sequence for partitions is A225600.
%H A228370 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H A228370 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a>
%F A228370 a(n) = sum_{k=1..n} A228371(k), n >= 1.
%F A228370 a(2n-1) = A005187(n) + A006520(n+1) - A006519(n), n >= 1.
%F A228370 a(2n) = A005187(n) + A006520(n+1), n >= 1.
%e A228370 For n = 32 the diagram represents the 16 compositions of 5. The structure has 79 toothpicks, so a(32) = 79. Note that the k-th horizontal line segment has length A001511(k) equals the largest part of the k-th region, and the k-th vertical line segment has length A006519(k) equals the number of parts of the k-th region.
%e A228370 ----------------------------------------------------------
%e A228370 .                                    Triangle
%e A228370 Compositions                  of compositions (rows)
%e A228370 of 5          Diagram          and regions (columns)
%e A228370 ----------------------------------------------------------
%e A228370 .            _ _ _ _ _
%e A228370 5            _        |                                 5
%e A228370 1+4          _|_      |                               1 4
%e A228370 2+3          _  |     |                             2   3
%e A228370 1+1+3        _|_|_    |                           1 1   3
%e A228370 3+2          _    |   |                         3       2
%e A228370 1+2+2        _|_  |   |                       1 2       2
%e A228370 2+1+2        _  | |   |                     2   1       2
%e A228370 1+1+1+2      _|_|_|_  |                   1 1   1       2
%e A228370 4+1          _      | |                 4               1
%e A228370 1+3+1        _|_    | |               1 3               1
%e A228370 2+2+1        _  |   | |             2   2               1
%e A228370 1+1+2+1      _|_|_  | |           1 1   2               1
%e A228370 3+1+1        _    | | |         3       1               1
%e A228370 1+2+1+1      _|_  | | |       1 2       1               1
%e A228370 2+1+1+1      _  | | | |     2   1       1               1
%e A228370 1+1+1+1+1     | | | | |   1 1   1       1               1
%e A228370 .
%e A228370 Illustration of initial terms (n = 1..16):
%e A228370 .
%e A228370 .                                   _        _
%e A228370 .                   _ _    _ _      _ _      _|_
%e A228370 .       _     _     _      _  |     _  |     _  |
%e A228370 .              |     |      | |      | |      | |
%e A228370 .
%e A228370 .       1      2     4      6        7        8
%e A228370 .
%e A228370 .
%e A228370 .                                            _ _
%e A228370 .                        _         _         _
%e A228370 .     _ _ _    _ _ _     _ _ _     _|_ _     _|_ _
%e A228370 .     _        _    |    _    |    _    |    _    |
%e A228370 .     _|_      _|_  |    _|_  |    _|_  |    _|_  |
%e A228370 .     _  |     _  | |    _  | |    _  | |    _  | |
%e A228370 .      | |      | | |     | | |     | | |     | | |
%e A228370 .
%e A228370 .       11       15        16        17        19
%e A228370 .
%e A228370 .
%e A228370 .                                _ _ _ _    _ _ _ _
%e A228370 .             _        _         _          _      |
%e A228370 .    _ _      _ _      _|_       _|_        _|_    |
%e A228370 .    _  |     _  |     _  |      _  |       _  |   |
%e A228370 .    _|_|_    _|_|_    _|_|_     _|_|_      _|_|_  |
%e A228370 .    _    |   _    |   _    |    _    |     _    | |
%e A228370 .    _|_  |   _|_  |   _|_  |    _|_  |     _|_  | |
%e A228370 .    _  | |   _  | |   _  | |    _  | |     _  | | |
%e A228370 .     | | |    | | |    | | |     | | |      | | | |
%e A228370 .
%e A228370 .      21       22       23        27          35
%e A228370 .
%o A228370 (Python)
%o A228370 def A228370(n): return sum(((m:=(i>>1)+1)&-m).bit_length() if i&1 else (m:=i>>1)&-m for i in range(1,n+1)) # _Chai Wah Wu_, Jul 14 2022
%Y A228370 Cf. A001511, A005187, A006519, A006520, A011782, A139250, A187816, A187818, A206437, A225600, A228350, A228351, A228366, A228367, A228368, A228371, A228525, A228526.
%K A228370 nonn
%O A228370 0,3
%A A228370 _Omar E. Pol_, Aug 21 2013