This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228371 #18 Jul 16 2022 01:04:54 %S A228371 1,1,2,2,1,1,3,4,1,1,2,2,1,1,4,8,1,1,2,2,1,1,3,4,1,1,2,2,1,1,5,16,1,1, %T A228371 2,2,1,1,3,4,1,1,2,2,1,1,4,8,1,1,2,2,1,1,3,4,1,1,2,2,1,1,6,32,1,1,2,2, %U A228371 1,1,3,4,1,1,2,2,1,1,4,8,1,1,2,2,1,1,3,4,1,1,2,2,1,1,5,16,1,1,2,2,1,1,3,4,1,1,2,2,1,1,4,8,1,1,2,2,1,1,3,4,1,1,2,2,1,1,7,64 %N A228371 First differences of A228370. Also A001511 and A006519 interleaved. %C A228371 Number of toothpicks added at n-th stage to the toothpick structure (related to integer compositions) of A228370. %C A228371 The equivalent sequence for integer partitions is A220517. %H A228371 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A228371 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a> %F A228371 a(2n-1) = A001511(n), n >= 1. a(2n) = A006519(n), n >= 1. %e A228371 Illustration of the structure after 32 stages. The diagram represents the 16 compositions of 5. The k-th horizontal line segment has length A001511(k) equals the largest part of the k-th region. The k-th vertical line segment has length A006519(k) equals the number of parts of the k-th region. %e A228371 . _ _ _ _ _ %e A228371 16 _ | %e A228371 15 _|_ | %e A228371 14 _ | | %e A228371 13 _|_|_ | %e A228371 12 _ | | %e A228371 11 _|_ | | %e A228371 10 _ | | | %e A228371 9 _|_|_|_ | %e A228371 8 _ | | %e A228371 7 _|_ | | %e A228371 6 _ | | | %e A228371 5 _|_|_ | | %e A228371 4 _ | | | %e A228371 3 _|_ | | | %e A228371 2 _ | | | | %e A228371 1 | | | | | %e A228371 . %e A228371 Written as an irregular triangle the sequence begins: %e A228371 1,1; %e A228371 2,2; %e A228371 1,1,3,4; %e A228371 1,1,2,2,1,1,4,8; %e A228371 1,1,2,2,1,1,3,4,1,1,2,2,1,1,5,16; %e A228371 1,1,2,2,1,1,3,4,1,1,2,2,1,1,4,8,1,1,2,2,1,1,3,4,1,1,2,2,1,1,6,32; %e A228371 ... %o A228371 (Python) %o A228371 def A228371(n): return ((m:=(n>>1)+1)&-m).bit_length() if n&1 else (m:=n>>1)&-m # _Chai Wah Wu_, Jul 14 2022 %Y A228371 Row lengths give 2*A011782. Right border gives A000079. %Y A228371 Cf. A001511, A006519, A139250, A139251, A206437, A220517, A228370. %K A228371 nonn,tabf %O A228371 1,3 %A A228371 _Omar E. Pol_, Aug 21 2013