A231201 Number of ways to write n = x + y (x, y > 0) with 2^x + y prime.
0, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 2, 1, 2, 4, 4, 4, 5, 3, 2, 4, 1, 2, 1, 4, 4, 4, 2, 3, 4, 4, 4, 3, 2, 5, 4, 4, 4, 3, 5, 4, 5, 3, 4, 7, 6, 5, 2, 5, 3, 5, 7, 1, 3, 5, 5, 4, 6, 5, 4, 4, 5, 3, 1, 4, 7, 6, 5, 5, 4, 5, 7, 4, 5, 3, 5, 6, 8, 3, 4, 4, 6, 3, 5, 2, 2, 3, 6, 6, 4, 5, 6, 5, 5, 8, 6, 4, 7, 5, 4
Offset: 1
Examples
a(8) = 1 since 8 = 3 + 5 with 2^3 + 5 = 13 prime. a(53) = 1 since 53 = 20 + 33 with 2^{20} + 33 = 1048609 prime. a(64) = 1 since 64 = 13 + 51 with 2^{13} + 51 = 8243 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Write n = k + m with 2^k + m prime, a message to Number Theory List, Nov. 16, 2013.
- Z.-W. Sun, On a^n+ bn modulo m, arXiv:1312.1166 [math.NT], 2013-2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2015.
- Z.-W. Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT].)
Crossrefs
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[2^x+n-x],1,0],{x,1,n-1}] Table[a[n],{n,1,100}]
Comments