This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228432 #18 Nov 13 2013 14:19:54 %S A228432 0,0,2,2,7,14,24,25,37,70,71,114,140,143,170,234,274,310,357,399,444, %T A228432 498,552,660,784,850,856,926,990,1064,1310,1395,1564,1574,1850,1859, %U A228432 2054,2173,2277,2494,2623,2730,2986,3104,3234,3246,3656,4085,4235,4370 %N A228432 Sum_{i=1..floor(prime(n)/4)} floor(sqrt(i*prime(n))). %C A228432 If p = prime(n) in A002145 and n>3, or said differently, if n in A080148 and n>1, then a(n) = A081115(n). %H A228432 S. A. Shirali, <a href="http://www.jstor.org/stable/2690862">A family portrait of primes -- a case study in discrimination</a>, Math. Mag., Vol. 70, No. 4 (Oct. 1997), pp. 263-272. %e A228432 For n=7, p=17 and a(7) = floor(sqrt(17)) + floor(sqrt(34)) + floor(sqrt(51)) + floor(sqrt(68)) = 4+5+7+8 = 24. %t A228432 Table[p = Prime[n]; Sum[Floor[Sqrt[i*p]], {i, Floor[p/4]}], {n, 100}] (* _T. D. Noe_, Nov 13 2013 *) %o A228432 (PARI) a(n) = p = prime(n); sum(i=1, p\4, sqrtint(i*p)); %Y A228432 Cf. A002145, A080148, A081115. %K A228432 nonn %O A228432 1,3 %A A228432 _Michel Marcus_, Nov 11 2013