cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228461 Two-dimensional array read by antidiagonals: T(n,k) = number of arrays of maxima of three adjacent elements of some length n+2 0..k array.

This page as a plain text file.
%I A228461 #18 Dec 07 2016 23:29:29
%S A228461 2,3,4,4,9,7,5,16,22,11,6,25,50,46,17,7,36,95,130,91,27,8,49,161,295,
%T A228461 310,183,44,9,64,252,581,821,736,383,72,10,81,372,1036,1847,2227,1821,
%U A228461 819,117,11,100,525,1716,3703,5615,6254,4673,1749,189,12,121,715,2685,6812
%N A228461 Two-dimensional array read by antidiagonals: T(n,k) = number of arrays of maxima of three adjacent elements of some length n+2 0..k array.
%C A228461 There are two arrays (or lists, or vectors) involved, a length n+2 array with free elements from 0..k (thus (k+1)^(n+2) of them) and an array that is being enumerated of length n, each element of the latter being the maximum of three adjacent elements of the first array.
%C A228461 Many different first arrays can give the same second array.
%H A228461 R. H. Hardin, <a href="/A228461/b228461.txt">Table of n, a(n) for n = 1..1700</a>
%F A228461 Empirical for column k:
%F A228461 k=1: a(n) = 2*a(n-1) -a(n-2) +a(n-4)
%F A228461 k=2: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +3*a(n-4) -a(n-5) +a(n-6) +a(n-7)
%F A228461 k=3: [order 10]
%F A228461 k=4: [order 13]
%F A228461 k=5: [order 16]
%F A228461 k=6: [order 19]
%F A228461 k=7: [order 22]
%F A228461 Empirical for row n:
%F A228461 n=1: a(n) = n + 1
%F A228461 n=2: a(n) = n^2 + 2*n + 1
%F A228461 n=3: a(n) = (2/3)*n^3 + (5/2)*n^2 + (17/6)*n + 1
%F A228461 n=4: a(n) = (1/3)*n^4 + 2*n^3 + (25/6)*n^2 + (7/2)*n + 1
%F A228461 n=5: a(n) = (2/15)*n^5 + (7/6)*n^4 + (25/6)*n^3 + (19/3)*n^2 + (21/5)*n + 1
%F A228461 n=6: [polynomial of degree 6]
%F A228461 n=7: [polynomial of degree 7]
%e A228461 Table starts
%e A228461 ...2....3.....4.....5......6......7.......8.......9......10.......11.......12
%e A228461 ...4....9....16....25.....36.....49......64......81.....100......121......144
%e A228461 ...7...22....50....95....161....252.....372.....525.....715......946.....1222
%e A228461 ..11...46...130...295....581...1036....1716....2685....4015.....5786.....8086
%e A228461 ..17...91...310...821...1847...3703....6812...11721...19117....29843....44914
%e A228461 ..27..183...736..2227...5615..12453...25096...46941...82699...138699...223224
%e A228461 ..44..383..1821..6254..17487..42386...92430..185727..349558...623513..1063283
%e A228461 ..72..819..4673.18394..57303.151882..357510..768231.1535578..2893605..5191407
%e A228461 .117.1749.12107.55285.194064.567835.1453506.3357985.7152815.14263777.26930773
%e A228461 Some solutions for n=4 k=4
%e A228461 ..3....4....4....3....3....4....3....4....3....0....3....3....4....2....0....2
%e A228461 ..0....4....1....3....2....0....2....4....1....0....3....3....1....2....0....0
%e A228461 ..4....1....1....0....1....0....4....0....0....0....2....1....4....2....2....3
%e A228461 ..4....0....3....3....2....0....4....2....3....1....3....1....4....0....4....3
%Y A228461 Column 1 is A005252(n+3)
%Y A228461 Column 2 is A217878
%Y A228461 Column 3 is A217949.
%Y A228461 A228464 is another column.
%Y A228461 Row 1 is A000027(n+1)
%Y A228461 Row 2 is A000290(n+1)
%Y A228461 Row 3 is A002412(n+1)
%Y A228461 Row 4 is A006324(n+1)
%Y A228461 See A217883, A217954 for similar arrays.
%K A228461 nonn,tabl
%O A228461 1,1
%A A228461 _R. H. Hardin_ Aug 22 2013
%E A228461 Edited by _N. J. A. Sloane_, Sep 02 2013