cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228463 Number of arrays of maxima of three adjacent elements of some length 8 0..n array.

Original entry on oeis.org

27, 183, 736, 2227, 5615, 12453, 25096, 46941, 82699, 138699, 223224, 346879, 522991, 768041, 1102128, 1549465, 2138907, 2904511, 3886128, 5130027, 6689551, 8625805, 11008376, 13916085, 17437771, 21673107, 26733448, 32742711, 39838287
Offset: 1

Views

Author

R. H. Hardin, Aug 22 2013

Keywords

Examples

			Some solutions for n=4:
..4....4....4....3....1....4....4....4....4....1....4....4....0....1....2....0
..2....4....4....1....0....2....2....2....2....0....4....2....1....1....1....0
..0....4....4....0....2....0....1....3....1....0....2....0....1....1....1....0
..0....3....1....1....3....0....3....3....0....2....2....1....2....0....0....1
..0....3....0....4....3....0....4....3....3....2....2....1....3....0....1....1
..2....3....4....4....3....1....4....3....4....3....2....1....4....4....2....4
		

Crossrefs

Row 6 of A228461.

Formula

Empirical: a(n) = (2/45)*n^6 + (8/15)*n^5 + (115/36)*n^4 + 8*n^3 + (1667/180)*n^2 + (149/30)*n + 1.
Conjectures from Colin Barker, Sep 11 2018: (Start)
G.f.: x*(27 - 6*x + 22*x^2 - 27*x^3 + 22*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)