cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228464 Number of arrays of maxima of three adjacent elements of some 0..n array of length 9.

This page as a plain text file.
%I A228464 #23 Mar 17 2018 05:45:51
%S A228464 44,383,1821,6254,17487,42386,92430,185727,349558,623513,1063283,
%T A228464 1745172,2771393,4276212,6433004,9462285,13640784,19311619,26895641,
%U A228464 36904010,49952067,66774566,88242330,115380395,149387706,191658429,243804943
%N A228464 Number of arrays of maxima of three adjacent elements of some 0..n array of length 9.
%C A228464 See A228461 for explanation of definition.
%H A228464 R. H. Hardin, <a href="/A228464/b228464.txt">Table of n, a(n) for n = 1..210</a>
%F A228464 Empirical: a(n) = (4/315)*n^7 + (1/5)*n^6 + (91/45)*n^5 + (63/8)*n^4 + (2557/180)*n^3 + (517/40)*n^2 + (2419/420)*n + 1 = (n+1) *(n+2) *(32*n^5 + 408*n^4 + 3808*n^3 + 7605*n^2 + 5367*n + 1260)/2520.
%F A228464 Conjectures from _Colin Barker_, Mar 16 2018: (Start)
%F A228464 G.f.: x*(44 + 31*x - 11*x^2 - 54*x^3 + 75*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
%F A228464 a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
%F A228464 (End)
%e A228464 Some solutions for n=4:
%e A228464   3   0   3   4   4   3   3   4   3   4   2   3   2   0   3   2
%e A228464   3   0   2   4   4   0   0   2   1   3   4   3   0   0   4   0
%e A228464   0   0   2   4   0   2   0   2   4   4   4   3   4   0   4   2
%e A228464   0   0   1   3   1   3   1   2   4   4   4   3   4   4   4   2
%e A228464   0   0   3   1   1   3   2   2   4   4   0   1   4   4   0   2
%e A228464   1   0   3   0   4   4   3   2   4   4   0   1   0   4   3   2
%e A228464   1   3   4   3   4   4   3   1   0   2   1   2   0   3   3   0
%Y A228464 Row 7 of A228461. Cf. A217949.
%K A228464 nonn
%O A228464 1,1
%A A228464 _R. H. Hardin_, Aug 22 2013