A228478 Number of n X 4 binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or antidiagonally.
3, 9, 41, 172, 728, 3084, 13050, 55252, 233875, 990055, 4191028, 17741339, 75101906, 317918500, 1345800258, 5696989354, 24116274286, 102088075950, 432155280235, 1829382955772, 7744072911728, 32781908823977, 138771103836595
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1..0....1..0..1..0....1..0..0..0....1..0..0..1....1..0..0..0 ..0..0..0..1....0..0..0..0....0..1..0..1....0..0..0..0....0..0..0..0 ..1..0..0..0....0..0..0..1....0..0..0..0....1..0..0..1....0..1..0..1 ..0..1..0..0....0..1..0..0....0..1..0..1....0..1..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 4 of A228482.
Formula
a(n) = a(n-1) + 10*a(n-2) + 15*a(n-3) + 4*a(n-4) - 6*a(n-5) - a(n-6) + 3*a(n-7) - a(n-8).
Empirical g.f.: x*(3 + 6*x + 2*x^2 - 4*x^3 - x^4 + 3*x^5 - x^6) / (1 - x - 10*x^2 - 15*x^3 - 4*x^4 + 6*x^5 + x^6 - 3*x^7 + x^8). - Colin Barker, Sep 11 2018
Comments