A228482 T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or antidiagonally.
1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 9, 14, 9, 5, 8, 19, 41, 41, 19, 8, 13, 41, 127, 172, 127, 41, 13, 21, 88, 386, 728, 728, 386, 88, 21, 34, 189, 1181, 3084, 4354, 3084, 1181, 189, 34, 55, 406, 3605, 13050, 25699, 25699, 13050, 3605, 406, 55, 89, 872, 11013, 55252, 152373
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..0..0..1....1..0..1..0....1..0..0..1....1..0..1..0....1..0..1..0 ..0..0..0..0....0..0..0..1....0..1..0..0....0..0..0..0....0..0..0..0 ..0..0..0..1....0..0..0..0....0..0..1..0....0..1..0..0....0..0..0..0 ..0..0..0..0....0..1..0..0....0..0..0..1....0..0..1..0....1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1333
Crossrefs
Formula
Recurrences for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3)
k=3: a(n) = a(n-1) +5*a(n-2) +4*a(n-3) -a(n-5)
k=4: a(n) = a(n-1) +10*a(n-2) +15*a(n-3) +4*a(n-4) -6*a(n-5) -a(n-6) +3*a(n-7) -a(n-8)
k=5: a(n) = 3*a(n-1) +15*a(n-2) +16*a(n-3) -11*a(n-4) -20*a(n-5) +19*a(n-6) -8*a(n-7) +a(n-9)
k=6: a(n) = a(n-1) +42*a(n-2) +147*a(n-3) +70*a(n-4) -478*a(n-5) -449*a(n-6) +1199*a(n-7) +732*a(n-8) -2727*a(n-9) +659*a(n-10) +3827*a(n-11) -5776*a(n-12) +3926*a(n-13) -1152*a(n-14) -148*a(n-15) +154*a(n-16) +32*a(n-17) -29*a(n-18) -6*a(n-19) +3*a(n-20) +a(n-21)
k=7: a(n) = a(n-1) +85*a(n-2) +432*a(n-3) +192*a(n-4) -3711*a(n-5) -5096*a(n-6) +21164*a(n-7) +27340*a(n-8) -112654*a(n-9) -37244*a(n-10) +477721*a(n-11) -464722*a(n-12) -897815*a(n-13) +3102284*a(n-14) -4149918*a(n-15) +2761082*a(n-16) -138325*a(n-17) -1353257*a(n-18) +942033*a(n-19) +64683*a(n-20) -365483*a(n-21) +80904*a(n-22) +92350*a(n-23) -27097*a(n-24) -23292*a(n-25) +2585*a(n-26) +5635*a(n-27) +1405*a(n-28) -561*a(n-29) -545*a(n-30) -173*a(n-31) -14*a(n-32) +5*a(n-33) +a(n-34)
Comments