A228489 Period of trace(n*tau), where tau = (1+sqrt(5))/2 = golden ratio.
1, 1, 1, 1, 1, 4, 1, 1, 2, 4, 1, 1, 1, 6, 3, 1, 2, 1, 1, 10, 1, 8, 6, 1, 9, 4, 10, 8, 1, 18, 1, 6, 6, 1, 13, 1, 4, 1, 3, 10, 4, 4, 12, 6, 17, 1, 1, 1, 18, 21, 8, 10, 6, 8, 1, 8, 12, 4, 16, 16, 3, 6, 1, 14, 9, 14, 20, 1, 6, 36, 18, 1, 4, 13, 26, 1, 12, 20, 20
Offset: 0
Keywords
Examples
a(6) = 4 because the trace(6*tau) = 1001 (repeated) has period 4. n trace(n*tau) - ------------ 1 000000000... 2 111111111... 3 000000000... 4 000000000... 5 000000000... 6 1001 (repeated) 7 000000000... 8 111111111... 9 10 (repeated) 10 0100 (repeated) 14 110011 (repeated) 17 10 (repeated) 20 0101010010 (repeated) 30 101000111111001010 (repeated) 31 000000000... 35 1100101010011 (repeated)
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; period[seq_] := (If[Last[#1] == {} || Length[#1] == Length[seq] - 1, 0, Length[#1]] &)[NestWhileList[Rest, Rest[seq], #1 != Take[seq, Length[#1]] &, 1]]; periodicityReport[seq_] := ({Take[seq, Length[seq] - Length[#1]], period[#1], Take[#1, period[#1]]} &)[Take[seq, -Length[NestWhile[Rest[#1] &, seq, period[#1] == 0 &, 1, Length[seq]]]]] (*output format {initial segment,period length,period}*) t[{x_, y_, }] := t[{x, y}]; t[{x, y_}] := Prepend[If[# > y - #, {y - #, 1}, {#, 0}], y] &[Mod[x, y]]; userIn2[{x_, y_}] := Most[NestWhileList[t, {x, y}, (#[[2]] > 0) &]]; z = 160; pr = Table[p = Convergents[n*GoldenRatio, z]; pairs = Table[{Numerator[#], Denominator[#]} &[p[[k]]], {k, 1, z}]; periodicityReport[Most[Last[Map[Map[#[[3]] &, Rest[userIn2[#]]] &, pairs]]]], {n, 200}] m = Map[#[[2]] &, pr] (* Peter J. C. Moses, Aug 22 2013 *)
Comments