A228501 Number of n X 3 binary arrays with top left value 1 and no two ones adjacent horizontally, vertically, diagonally or antidiagonally.
2, 3, 12, 29, 88, 239, 684, 1909, 5392, 15143, 42644, 119933, 337512, 949535, 2671740, 7517061, 21150272, 59508247, 167433188, 471090573, 1325464216, 3729333775, 10492879052, 29522830997, 83065631600, 233713998087, 657579228980
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..1....1..0..0....1..0..1....1..0..0....1..0..0....1..0..1....1..0..0 ..0..0..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1 ..0..0..1....0..0..0....0..0..1....1..0..1....0..0..0....0..1..0....0..0..0 ..0..0..0....1..0..0....1..0..0....0..0..0....0..0..1....0..0..0....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 3 of A228506.
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3).
Empirical g.f.: x*(2 - x) / (1 - 2*x - 3*x^2 + 2*x^3). - Colin Barker, Sep 11 2018