A228504 Number of n X 6 binary arrays with top left value 1 and no two ones adjacent horizontally, vertically, diagonally or antidiagonally.
8, 21, 239, 1252, 9528, 59839, 413786, 2724191, 18387032, 122539084, 821945828, 5495164996, 36800032261, 246231184011, 1648269251345, 11031030456148, 73833534042745, 494158034052549, 3307432804186754, 22136531409536410
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..0..0..1..0..0....1..0..0..0..0..0....1..0..0..1..0..1....1..0..0..1..0..0 ..0..0..0..0..0..1....0..0..0..0..0..1....0..0..0..0..0..0....0..0..0..0..0..1 ..0..1..0..0..0..0....0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..1..0..0 ..0..0..0..0..0..0....1..0..1..0..0..1....0..0..0..0..1..0....0..1..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A228506.
Formula
Empirical: a(n) = 3*a(n-1) + 30*a(n-2) - 17*a(n-3) - 138*a(n-4) + 85*a(n-5) + 116*a(n-6) - 42*a(n-7) - 32*a(n-8).
Empirical g.f.: x*(8 - 3*x - 64*x^2 + 41*x^3 + 63*x^4 - 24*x^5 - 18*x^6) / (1 - 3*x - 30*x^2 + 17*x^3 + 138*x^4 - 85*x^5 - 116*x^6 + 42*x^7 + 32*x^8). - Colin Barker, Sep 12 2018