This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228510 #19 Feb 11 2024 04:41:28 %S A228510 120960,4682880,54268416,364571136,1758756096,6759726336,21978671616, %T A228510 62815154688,161990345088,384087420288,849090198528,1768911326208, %U A228510 3502103394816,6633368787456,12086145432576,21278464551936,36334471510656,60366490588800 %N A228510 a(n) = (128*n^4/25+14528*n^3/225+20344*n^2/75+661816*n/1575+168)*(n+6)!/n!. %C A228510 Name was "Coefficients from quartic oscillator number 22". %C A228510 See comment and example in A225010. %H A228510 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1). %F A228510 G.f.: 1152*(105 +2910*x +8168*x^2 +4530*x^3 +415*x^4)/(1-x)^11. [_Bruno Berselli_, Oct 16 2013] %e A228510 For n=4 the solution is 1758756096. %t A228510 Table[(128 n^4/25 + 14528 n^3/225 + 20344 n^2/75 + 661816 n/1575 + 168) (n + 6)!/n!, {n, 0, 20}] (* _Bruno Berselli_, Oct 16 2013 *) %o A228510 (Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1152*(105+2910*x+8168*x^2+4530*x^3+415*x^4)/(1-x)^11)); // _Bruno Berselli_, Oct 16 2013 %Y A228510 Cf. A225010. %K A228510 nonn,easy %O A228510 0,1 %A A228510 _Charles A. Lane_, Aug 23 2013