cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228513 a(n) = Sum_{k=0..n} 2^k*(n!/k!)^2.

This page as a plain text file.
%I A228513 #10 Jun 10 2018 11:25:27
%S A228513 1,3,16,152,2448,61232,2204416,108016512,6913057024,559957619456,
%T A228513 55995761946624,6775487195543552,975670156158275584,
%U A228513 164888256390748581888,32318098252586722066432,7271572106832012464979968,1861522459348995191034937344,537979990751859610209097023488
%N A228513 a(n) = Sum_{k=0..n} 2^k*(n!/k!)^2.
%C A228513 Generally, Sum_{k=0..n} x^k*(n!/k!)^2 is asymptotic to BesselI(0,2*sqrt(x))*(n!)^2
%F A228513 a(n) = (n^2+2)*a(n-1) - 2*(n-1)^2*a(n-2).
%F A228513 a(n) ~ 2*Pi*BesselI(0,2*sqrt(2)) * n^(2*n+1)/exp(2*n).
%t A228513 Table[(n!)^2*Sum[2^j/(j!)^2, {j, 0, n}], {n, 0, 20}]
%t A228513 Total/@Table[2^k (n!/k!)^2,{n,0,20},{k,0,n}] (* _Harvey P. Dale_, Jun 10 2018 *)
%Y A228513 Cf. A000522, A006040, A217284.
%K A228513 nonn,easy
%O A228513 0,2
%A A228513 _Vaclav Kotesovec_, Aug 24 2013