A228519 Numbers n such that sigma(n) = sigma(n - phi(n)), where sigma(n) is the sum of divisors of n and phi(n) is the Euler totient function of n.
9356, 52412, 110442, 160834, 220884, 266866, 289230, 321668, 420790, 441768, 533732, 556818, 578460, 643336, 731530, 841580, 883536, 1067464, 1113636, 1156920, 1286672, 1446150, 1463060, 1683160, 1767072, 2103950, 2134928, 2227272, 2313840, 2545888, 2573344, 2892300
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory); P:=proc(q) local n; for n from 1 to q do if sigma(n)=sigma(n-phi(n)) then print(n); fi; od; end: P(10^9);
-
Mathematica
Select[Range[10^6], DivisorSigma[1, #] == DivisorSigma[1, # - EulerPhi@ #] &] (* Michael De Vlieger, Jun 21 2016 *)
Formula
sigma(9356- phi(9356)) = sigma(9356 - 4676) = 16380 = sigma(9356).