A228524 Triangle read by rows: T(n,k) = total number of occurrences of parts k in the n-th section of the set of compositions (ordered partitions) of any integer >= n.
1, 1, 1, 3, 1, 1, 7, 3, 1, 1, 16, 7, 3, 1, 1, 36, 16, 7, 3, 1, 1, 80, 36, 16, 7, 3, 1, 1, 176, 80, 36, 16, 7, 3, 1, 1, 384, 176, 80, 36, 16, 7, 3, 1, 1, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1, 3840, 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1
Offset: 1
Examples
Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4, also the first four sections of the set of compositions of any integer >= 4: . . 1 2 3 4 . _ _ _ _ . |_| _| | | | | | . |_ _| _ _| | | | . |_| | | | . |_ _ _| _ _ _| | . |_| | | . |_ _| | . |_| | . |_ _ _ _| . For n = 4 and k = 2, T(4,2) = 3 because there are 3 parts of size 2 in all compositions of 4, see below: -------------------------------------------------------- . The last section Number of . Composition of 4 of the set of parts of . compositions of 4 size k . -------------------- ------------------- . Diagram Diagram k = 1 2 3 4 . ------------------------------------------------------ . _ _ _ _ _ . 1+1+1+1 |_| | | | 1 | | 1 0 0 0 . 2+1+1 |_ _| | | 1 | | 1 0 0 0 . 1+2+1 |_| | | 1 | | 1 0 0 0 . 3+1 |_ _ _| | 1 _ _ _| | 1 0 0 0 . 1+1+2 |_| | | 1+1+2 |_| | | 2 1 0 0 . 2+2 |_ _| | 2+2 |_ _| | 0 2 0 0 . 1+3 |_| | 1+3 |_| | 1 0 1 0 . 4 |_ _ _ _| 4 |_ _ _ _| 0 0 0 1 . --------- . Column sums give row 4: 7,3,1,1 . Triangle begins: 1; 1, 1; 3, 1, 1; 7, 3, 1, 1; 16, 7, 3, 1, 1; 36, 16, 7, 3, 1, 1; 80, 36, 16, 7, 3, 1, 1; 176, 80, 36, 16, 7, 3, 1, 1; 384, 176, 80, 36, 16, 7, 3, 1, 1; 832, 384, 176, 80, 36, 16, 7, 3, 1, 1; 1792, 832, 384, 176, 80, 36, 16, 7, 3, 1, 1; 3840, 1792, 832, 384,176, 80, 36, 16, 7, 3, 1, 1; 8192, 3840,1792, 832,384,176, 80, 36, 16, 7, 3, 1, 1; ...
Crossrefs
Formula
T(n,k) = A045891(n-k), n >= 1, 1<=k<=n.
Comments