This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228525 #63 Sep 14 2013 12:46:36 %S A228525 1,1,1,2,1,1,1,2,1,1,2,3,1,1,1,1,2,1,1,1,2,1,3,1,1,1,2,2,2,1,3,4,1,1, %T A228525 1,1,1,2,1,1,1,1,2,1,1,3,1,1,1,1,2,1,2,2,1,1,3,1,4,1,1,1,1,2,2,1,2,1, %U A228525 2,2,3,2,1,1,3,2,3,1,4,5,1,1,1,1,1,1 %N A228525 Triangle read by rows in which row n lists the compositions (ordered partitions) of n in colexicographic order. %C A228525 The representation of the compositions (for fixed n) is as lists of parts, the order between individual compositions (for the same n) is co-lexicographic. [_Joerg Arndt_, Sep 02 2013] %C A228525 The equivalent sequence for partitions is A211992. %C A228525 Row n has length A001792(n-1). %C A228525 Row sums give A001787, n >= 1. %H A228525 Joerg Arndt, <a href="/A228525/b228525.txt">Table of n, a(n) for n = 1..10000</a> %e A228525 Illustration of initial terms: %e A228525 --------------------------------- %e A228525 n j Diagram Composition %e A228525 --------------------------------- %e A228525 . _ %e A228525 1 1 |_| 1; %e A228525 . _ _ %e A228525 2 1 |_| | 1, 1, %e A228525 2 2 |_ _| 2; %e A228525 . _ _ _ %e A228525 3 1 |_| | | 1, 1, 1, %e A228525 3 2 |_ _| | 2, 1, %e A228525 3 3 |_| | 1, 2, %e A228525 3 4 |_ _ _| 3; %e A228525 . _ _ _ _ %e A228525 4 1 |_| | | | 1, 1, 1, 1, %e A228525 4 2 |_ _| | | 2, 1, 1, %e A228525 4 3 |_| | | 1, 2, 1, %e A228525 4 4 |_ _ _| | 3, 1, %e A228525 4 5 |_| | | 1, 1, 2, %e A228525 4 6 |_ _| | 2, 2, %e A228525 4 7 |_| | 1, 3, %e A228525 4 8 |_ _ _ _| 4; %e A228525 . %e A228525 Triangle begins: %e A228525 [1]; %e A228525 [1,1],[2]; %e A228525 [1,1,1],[2,1],[1,2],[3]; %e A228525 [1,1,1,1],[2,1,1],[1,2,1],[3,1],[1,1,2],[2,2],[1,3],[4]; %e A228525 [1,1,1,1,1],[2,1,1,1],[1,2,1,1],[3,1,1],[1,1,2,1],[2,2,1],[1,3,1],[4,1],[1,1,1,2],[2,1,2],[1,2,2],[3,2],[1,1,3],[2,3],[1,4],[5]; %o A228525 (PARI) %o A228525 gen_comp(n)= %o A228525 { /* Generate compositions of n as lists of parts (order is lex): */ %o A228525 my(ct = 0); %o A228525 my(m, z, pt); %o A228525 \\ init: %o A228525 my( a = vector(n, j, 1) ); %o A228525 m = n; %o A228525 while ( 1, %o A228525 ct += 1; %o A228525 pt = vector(m, j, a[j]); %o A228525 \\ /* for A228369 print composition: */ %o A228525 \\ for (j=1, m, print1(pt[j],", ") ); %o A228525 /* for A228525 print reversed (order is colex): */ %o A228525 forstep (j=m, 1, -1, print1(pt[j],", ") ); %o A228525 if ( m<=1, return(ct) ); \\ current is last %o A228525 a[m-1] += 1; %o A228525 z = a[m] - 2; %o A228525 a[m] = 1; %o A228525 m += z; %o A228525 ); %o A228525 return(ct); %o A228525 } %o A228525 for(n=1, 12, gen_comp(n) ); %o A228525 \\ _Joerg Arndt_, Sep 02 2013 %Y A228525 Cf. A066099, A211992, A228351, A228369. %K A228525 nonn,tabf %O A228525 1,4 %A A228525 _Omar E. Pol_, Aug 24 2013