This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228526 #27 Sep 22 2013 04:04:20 %S A228526 1,2,2,5,4,3,12,10,6,4,28,24,15,8,5,64,56,36,20,10,6,144,128,84,48,25, %T A228526 12,7,320,288,192,112,60,30,14,8,704,640,432,256,140,72,35,16,9,1536, %U A228526 1408,960,576,320,168,84,40,18,10,3328,3072,2112,1280,720 %N A228526 Triangle read by rows: T(n,k) = sum of all parts of size k in all compositions (ordered partitions) of n. %C A228526 The equivalent sequence for partitions is A138785, see the first comment there. %F A228526 T(n,k) = k*A045623(n-k) = k*A221876(n,k), n >=1, 1<=k<=n. %e A228526 T(4,2) = 10 because there are 5 parts of size 2 in all compositions of 4, T(4,2) = 5*2 = 10 (see below): %e A228526 --------------------------------------------------------- %e A228526 . Compositions Parts Sum of parts %e A228526 . of 4 Diagram of size 2 of size 2 %e A228526 --------------------------------------------------------- %e A228526 . _ _ _ _ %e A228526 . 1+1+1+1 |_| | | | 0 0 %e A228526 . 2+1+1 |_ _| | | 1 2 %e A228526 . 1+2+1 |_| | | 1 2 %e A228526 . 3+1 |_ _ _| | 0 0 %e A228526 . 1+1+2 |_| | | 1 2 %e A228526 . 2+2 |_ _| | 2 4 %e A228526 . 1+3 |_| | 0 0 %e A228526 . 4 |_ _ _ _| 0 0 %e A228526 . ----- ------ %e A228526 . Total 5 10 %e A228526 . %e A228526 Triangle begins: %e A228526 1; %e A228526 2, 2; %e A228526 5, 4, 3; %e A228526 12, 10, 6, 4; %e A228526 28, 24, 15, 8, 5; %e A228526 64, 56, 36, 20, 10, 6; %e A228526 144, 128, 84, 48, 25, 12, 7; %e A228526 320, 288, 192, 112, 60, 30, 14, 8; %e A228526 704, 640, 432, 256, 140, 72, 35, 16, 9; %e A228526 1536, 1408, 960, 576, 320, 168, 84, 40, 18, 10; %e A228526 3328, 3072, 2112, 1280, 720, 384, 196, 96, 45, 20, 11; %e A228526 ... %Y A228526 Column k is k*A045623. Row sums give A001787, n >= 1. Right border gives A000027. %Y A228526 Cf. A001792, A011782, A138785, A221876, A228525, A228527. %K A228526 nonn,tabl %O A228526 1,2 %A A228526 _Omar E. Pol_, Aug 28 2013