This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228527 #23 Sep 22 2013 16:22:44 %S A228527 1,1,2,3,2,3,7,6,3,4,16,14,9,4,5,36,32,21,12,5,6,80,72,48,28,15,6,7, %T A228527 176,160,108,64,35,18,7,8,384,352,240,144,80,42,21,8,9,832,768,528, %U A228527 320,180,96,49,24,9,10,1792,1664,1152,704,400,216,112,56,27,10,11 %N A228527 Triangle read by rows: T(n,k) is the sum of all parts of size k of the n-th section of the set of compositions ( ordered partitions) of any integer >= n. %C A228527 In other words, T(n,k) is the sum of all parts of size k of the last section of the set of compositions (ordered partitions) of n. %C A228527 For the definition of "section of the set of compositions" see A228524. %C A228527 The equivalent sequence for partitions is A207383. %F A228527 T(n,k) = k*A045891(n-k) = k*A228524(n,k), n>=1, 1<=k<=n. %e A228527 Illustration (using the colexicograpical order of compositions A228525) of the four sections of the set of compositions of 4: %e A228527 . %e A228527 . 1 2 3 4 %e A228527 . _ _ _ _ %e A228527 . |_| _| | | | | | %e A228527 . |_ _| _ _| | | | %e A228527 . |_| | | | %e A228527 . |_ _ _| _ _ _| | %e A228527 . |_| | | %e A228527 . |_ _| | %e A228527 . |_| | %e A228527 . |_ _ _ _| %e A228527 . %e A228527 For n = 4 and k = 2, T(4,2) = 6 because there are 3 parts of size 2 in the last section of the set of compositions of 4, so T(4,2) = 3*2 = 6, see below: %e A228527 -------------------------------------------------------- %e A228527 . The last section Sum of %e A228527 . Composition of 4 of the set of parts of %e A228527 . compositions of 4 size k %e A228527 . -------------------- ------------------- %e A228527 . Diagram Diagram k = 1 2 3 4 %e A228527 . ------------------------------------------------------ %e A228527 . _ _ _ _ _ %e A228527 . 1+1+1+1 |_| | | | 1 | | 1 0 0 0 %e A228527 . 2+1+1 |_ _| | | 1 | | 1 0 0 0 %e A228527 . 1+2+1 |_| | | 1 | | 1 0 0 0 %e A228527 . 3+1 |_ _ _| | 1 _ _ _| | 1 0 0 0 %e A228527 . 1+1+2 |_| | | 1+1+2 |_| | | 2 2 0 0 %e A228527 . 2+2 |_ _| | 2+2 |_ _| | 0 4 0 0 %e A228527 . 1+3 |_| | 1+3 |_| | 1 0 3 0 %e A228527 . 4 |_ _ _ _| 4 |_ _ _ _| 0 0 0 4 %e A228527 . --------- %e A228527 . Column sums give row 4: 7,6,3,4 %e A228527 . %e A228527 Triangle begins: %e A228527 1; %e A228527 1, 2; %e A228527 3, 2, 3; %e A228527 7, 6, 3, 4; %e A228527 16, 14, 9, 4, 5; %e A228527 36, 32, 21, 12, 5, 6; %e A228527 80, 72, 48, 28, 15, 6, 7; %e A228527 176, 160, 108, 64, 35, 18, 7, 8; %e A228527 384, 352, 240, 144, 80, 42, 21, 8, 9; %e A228527 832, 768, 528, 320, 180, 96, 49, 24, 9, 10; %e A228527 1792, 1664, 1152, 704, 400, 216, 112, 56, 27, 10, 11; %e A228527 ... %Y A228527 Column 1 is A045891. Row sums give A001792. %Y A228527 Cf. A011782, A135010, A207383, A221876, A228350, A228366, A228370, A228524, A228526. %K A228527 nonn,tabl %O A228527 1,3 %A A228527 _Omar E. Pol_, Sep 01 2013