This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228528 #13 Sep 17 2013 15:52:51 %S A228528 1,1,1,2,2,1,1,1,1,1,2,3,3,1,1,2,1,2,1,1,1,1,1,1,1,1,2,2,2,1,3,4,4,1, %T A228528 1,3,1,2,2,1,1,1,2,1,3,1,1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,2,1,2,1, %U A228528 2,2,3,2,1,1,3,2,3,1,4,5,5,1,1,4,1 %N A228528 Triangle read by rows in which row n lists the compositions (ordered partitions) of n (see Comments lines for definition). %C A228528 In order to construct this sequence we use the following rules: T(1,1) = 1. For n >= 2, row n lists the last 2^(n-2) compositions from the n-th row of triangle A228351 and then the last 2^(n-2) compositions from the n-th row of triangle A228525. In both cases these compositions are listed in the same order as they are listed in the mentioned triangles. %C A228528 Row n has length A001792(n-1). %C A228528 Row sums give A001787, n >= 1. %C A228528 First differs from A227736 at a(18). %e A228528 Illustration of initial terms: %e A228528 --------------------------------------- %e A228528 n j Diagram Composition j %e A228528 --------------------------------------- %e A228528 . _ %e A228528 1 1 |_|_ 1; %e A228528 2 1 |_| | 1, 1, %e A228528 2 2 |_ _|_ 2; %e A228528 3 1 |_ | | 2, 1, %e A228528 3 2 |_|_| | 1, 1, 1, %e A228528 3 3 |_| | 1, 2, %e A228528 3 4 |_ _ _|_ 3; %e A228528 4 1 |_ | | 3, 1, %e A228528 4 2 |_|_ | | 1, 2, 1, %e A228528 4 3 |_ | | | 2, 1, 1, %e A228528 4 4 |_|_|_| | 1, 1, 1, 1, %e A228528 4 5 |_| | | 1, 1, 2, %e A228528 4 6 |_ _| | 2, 2, %e A228528 4 7 |_| | 1, 3, %e A228528 4 8 |_ _ _ _|_ 4; %e A228528 5 1 |_ | | 4, 1, %e A228528 5 2 |_|_ | | 1, 3, 1, %e A228528 5 3 |_ | | | 2, 2, 1, %e A228528 5 4 |_|_|_ | | 1, 1, 2, 1, %e A228528 5 5 |_ | | | 3, 1, 1, %e A228528 5 6 |_|_ | | | 1, 2, 1, 1, %e A228528 5 7 |_ | | | | 2, 1, 1, 1, %e A228528 5 8 |_|_|_|_| | 1, 1, 1, 1, 1, %e A228528 5 9 |_| | | | 1, 1, 1, 2, %e A228528 5 10 |_ _| | | 2, 1, 2, %e A228528 5 11 |_| | | 1, 2, 2, %e A228528 5 12 |_ _ _| | 3, 2, %e A228528 5 13 |_| | | 1, 1, 3, %e A228528 5 14 |_ _| | 2, 3, %e A228528 5 15 |_| | 1, 4, %e A228528 5 16 |_ _ _ _ _| 5; %e A228528 . %e A228528 Triangle begins: %e A228528 [1]; %e A228528 [1,1], [2]; %e A228528 [2,1], [1,1,1], [1,2], [3]; %e A228528 [3,1], [1,2,1], [2,1,1], [1,1,1,1], [1,1,2], [2,2], [1,3], [4]; %e A228528 [4,1], [1,3,1], [2,2,1], [1,1,2,1], [3,1,1], [1,2,1,1], [2,1,1,1], [1,1,1,1,1], [1,1,1,2], [2,1,2], [1,2,2], [3,2], [1,1,3], [2,3], [1,4], [5]; %Y A228528 Cf. A001792, A001787, A011782, A066099, A227736, A228525, A228351, A228369. %K A228528 nonn,tabf %O A228528 1,4 %A A228528 _Omar E. Pol_, Sep 07 2013