This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228531 #37 Sep 22 2023 07:54:45 %S A228531 1,2,1,1,3,1,2,1,1,1,4,2,2,1,3,1,1,2,1,1,1,1,5,2,3,1,4,1,2,2,1,1,3,1, %T A228531 1,1,2,1,1,1,1,1,6,3,3,2,4,2,2,2,1,5,1,2,3,1,1,4,1,1,2,2,1,1,1,3,1,1, %U A228531 1,1,2,1,1,1,1,1,1,7,3,4,2,5,2,2,3,1,6 %N A228531 Triangle read by rows in which row n lists the partitions of n in reverse lexicographic order. %C A228531 The representation of the partitions (for fixed n) is as (weakly) increasing lists of parts, the order between individual partitions (for the same n) is (list-)reversed lexicographic; see examples. [_Joerg Arndt_, Sep 03 2013] %C A228531 Also compositions in the triangle of A066099 that are in nondecreasing order. %C A228531 The equivalent sequence for compositions (ordered partitions) is A066099. %C A228531 Row n has length A006128(n). %C A228531 Row sums give A066186. %H A228531 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A228531 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A228531 Illustration of initial terms: %e A228531 --------------------------------- %e A228531 . Ordered %e A228531 n j Diagram partition %e A228531 --------------------------------- %e A228531 . _ %e A228531 1 1 |_| 1; %e A228531 . _ _ %e A228531 2 1 | _| 2, %e A228531 2 2 |_|_| 1, 1; %e A228531 . _ _ _ %e A228531 3 1 | _ _| 3, %e A228531 3 2 | | _| 1, 2, %e A228531 3 3 |_|_|_| 1, 1, 1; %e A228531 . _ _ _ _ %e A228531 4 1 | _ _| 4, %e A228531 4 2 | _|_ _| 2, 2, %e A228531 4 3 | | _ _| 1, 3, %e A228531 4 4 | | | _| 1, 1, 2, %e A228531 4 5 |_|_|_|_| 1, 1, 1, 1; %e A228531 . %e A228531 Triangle begins: %e A228531 [1]; %e A228531 [2],[1,1]; %e A228531 [3],[1,2],[1,1,1]; %e A228531 [4],[2,2],[1,3],[1,1,2],[1,1,1,1]; %e A228531 [5],[2,3],[1,4],[1,2,2],[1,1,3],[1,1,1,2],[1,1,1,1,1]; %e A228531 [6],[3,3],[2,4],[2,2,2],[1,5],[1,2,3],[1,1,4],[1,1,2,2],[1,1,1,3],[1,1,1,1,2],[1,1,1,1,1,1]; %e A228531 [7],[3,4],[2,5],[2,2,3],[1,6],[1,3,3],[1,2,4],[1,2,2,2],[1,1,5],[1,1,2,3],[1,1,1,4],[1,1,1,2,2],[1,1,1,1,3],[1,1,1,1,1,2],[1,1,1,1,1,1,1]; %e A228531 ... %t A228531 revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]]; %t A228531 Join@@Table[Sort[Reverse/@IntegerPartitions[n],revlexsort],{n,0,8}] (* _Gus Wiseman_, May 23 2020 *) %Y A228531 Row lengths are A000041. %Y A228531 Partition sums are A036042. %Y A228531 Partition minima are A182715. %Y A228531 Partition lengths are A333486. %Y A228531 The lexicographic version (sum/lex) is A026791. %Y A228531 Compositions under the same order (sum/revlex) are A066099. %Y A228531 The colexicographic version (sum/colex) is A080576. %Y A228531 The version for non-reversed partitions is A080577. %Y A228531 The length-sensitive version (sum/length/revlex) is A334302. %Y A228531 The Heinz numbers of these partitions are A334436. %Y A228531 Partitions in colexicographic order (sum/colex) are A211992. %Y A228531 Partitions in lexicographic order (sum/lex) are A193073. %Y A228531 Cf. A026792, A036036, A049085, A103921, A112798, A115623, A129129, A228351, A331581, A334435, A334439, A334442. %K A228531 nonn,tabf %O A228531 1,2 %A A228531 _Omar E. Pol_, Aug 30 2013