cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228539 Rows of binary Walsh matrices interpreted as reverse binary numbers.

This page as a plain text file.
%I A228539 #21 Oct 28 2021 10:00:47
%S A228539 0,0,2,0,10,12,6,0,170,204,102,240,90,60,150,0,43690,52428,26214,
%T A228539 61680,23130,15420,38550,65280,21930,13260,39270,4080,42330,49980,
%U A228539 27030,0,2863311530,3435973836,1717986918,4042322160,1515870810,1010580540
%N A228539 Rows of binary Walsh matrices interpreted as reverse binary numbers.
%C A228539 T(n,k) is row k of the binary Walsh matrix of size 2^n read as reverse binary number. The left digit is always 0, so all entries are even.
%C A228539 Most of these numbers are divisible by Fermat numbers (A000215): All entries in all rows beginning with row n are divisible by F_(n-1), except the entries 2^(n-1)...2^n-1. (This is the same in A228540.)
%C A228539 Divisibility by Fermat numbers:
%C A228539 All entries are divisible by F_0 = 3, except those with k = 1.
%C A228539 All entries in rows n >= 3 are divisible by F_2 = 17, except those with k = 4..7.
%H A228539 Tilman Piesk, <a href="/A228539/b228539.txt">Rows 0..8 of the triangle, flattened</a>
%H A228539 Tilman Piesk, <a href="/A228539/a228539.txt">Prime factorizations</a>
%H A228539 Tilman Piesk, <a href="http://commons.wikimedia.org/wiki/File:Binary_Walsh_matrix_256.svg">Binary Walsh matrix of size 256</a>
%F A228539 T(n,k) + A228540(n,k) = 2^2^n - 1
%F A228539 T(n,2^n-1) = A122570(n+1)
%e A228539 Binary Walsh matrix of size 4 and row 2 of the triangle:
%e A228539 0 0 0 0         0
%e A228539 0 1 0 1        10
%e A228539 0 0 1 1        12
%e A228539 0 1 1 0         6
%e A228539 Triangle starts:
%e A228539    k  =  0     1     2     3     4     5     6     7     8     9    10    11 ...
%e A228539 n
%e A228539 0        0
%e A228539 1        0     2
%e A228539 2        0    10    12     6
%e A228539 3        0   170   204   102   240    90    60   150
%e A228539 4        0 43690 52428 26214 61680 23130 15420 38550 65280 21930 13260 39270 ...
%Y A228539 Cf. A228540 (the same for the negated binary Walsh matrix).
%Y A228539 Cf. A000215 (Fermat numbers), A023394 (Prime factors of Fermat numbers).
%K A228539 nonn,tabf
%O A228539 0,3
%A A228539 _Tilman Piesk_, Aug 24 2013