This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228539 #21 Oct 28 2021 10:00:47 %S A228539 0,0,2,0,10,12,6,0,170,204,102,240,90,60,150,0,43690,52428,26214, %T A228539 61680,23130,15420,38550,65280,21930,13260,39270,4080,42330,49980, %U A228539 27030,0,2863311530,3435973836,1717986918,4042322160,1515870810,1010580540 %N A228539 Rows of binary Walsh matrices interpreted as reverse binary numbers. %C A228539 T(n,k) is row k of the binary Walsh matrix of size 2^n read as reverse binary number. The left digit is always 0, so all entries are even. %C A228539 Most of these numbers are divisible by Fermat numbers (A000215): All entries in all rows beginning with row n are divisible by F_(n-1), except the entries 2^(n-1)...2^n-1. (This is the same in A228540.) %C A228539 Divisibility by Fermat numbers: %C A228539 All entries are divisible by F_0 = 3, except those with k = 1. %C A228539 All entries in rows n >= 3 are divisible by F_2 = 17, except those with k = 4..7. %H A228539 Tilman Piesk, <a href="/A228539/b228539.txt">Rows 0..8 of the triangle, flattened</a> %H A228539 Tilman Piesk, <a href="/A228539/a228539.txt">Prime factorizations</a> %H A228539 Tilman Piesk, <a href="http://commons.wikimedia.org/wiki/File:Binary_Walsh_matrix_256.svg">Binary Walsh matrix of size 256</a> %F A228539 T(n,k) + A228540(n,k) = 2^2^n - 1 %F A228539 T(n,2^n-1) = A122570(n+1) %e A228539 Binary Walsh matrix of size 4 and row 2 of the triangle: %e A228539 0 0 0 0 0 %e A228539 0 1 0 1 10 %e A228539 0 0 1 1 12 %e A228539 0 1 1 0 6 %e A228539 Triangle starts: %e A228539 k = 0 1 2 3 4 5 6 7 8 9 10 11 ... %e A228539 n %e A228539 0 0 %e A228539 1 0 2 %e A228539 2 0 10 12 6 %e A228539 3 0 170 204 102 240 90 60 150 %e A228539 4 0 43690 52428 26214 61680 23130 15420 38550 65280 21930 13260 39270 ... %Y A228539 Cf. A228540 (the same for the negated binary Walsh matrix). %Y A228539 Cf. A000215 (Fermat numbers), A023394 (Prime factors of Fermat numbers). %K A228539 nonn,tabf %O A228539 0,3 %A A228539 _Tilman Piesk_, Aug 24 2013