cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228540 Rows of negated binary Walsh matrices interpreted as reverse binary numbers.

This page as a plain text file.
%I A228540 #22 Oct 28 2021 10:00:43
%S A228540 1,3,1,15,5,3,9,255,85,51,153,15,165,195,105,65535,21845,13107,39321,
%T A228540 3855,42405,50115,26985,255,43605,52275,26265,61455,23205,15555,38505,
%U A228540 4294967295,1431655765,858993459,2576980377,252645135,2779096485,3284386755
%N A228540 Rows of negated binary Walsh matrices interpreted as reverse binary numbers.
%C A228540 T(n,k) is row k of the negated binary Walsh matrix of size 2^n read as reverse binary number. The left digit is always 1, so all entries are odd.
%C A228540 Most of these numbers are divisible by Fermat numbers (A000215): All entries in all rows beginning with row n are divisible by F_(n-1), except the entries 2^(n-1)...2^n-1. (This is the same in A228539.)
%C A228540 Divisibility by Fermat numbers:
%C A228540 All entries in rows n >= 1 are divisible by F_0 =  3, except those with k = 1.
%C A228540 All entries in rows n >= 3 are divisible by F_2 = 17, except those with k = 4..7.
%H A228540 Tilman Piesk, <a href="/A228540/b228540.txt">Rows 0..8 of the triangle, flattened</a>
%H A228540 Tilman Piesk, <a href="/A228540/a228540.txt">Prime factorizations</a>
%H A228540 Tilman Piesk, <a href="http://commons.wikimedia.org/wiki/File:Binary_Walsh_matrix_256_neg.svg">Negated binary Walsh matrix of size 256</a>
%F A228540 T(n,k) + A228539(n,k) = 2^2^n - 1
%F A228540 T(n,0) = A051179(n)
%F A228540 T(n,2^n-1) = A122569(n+1)
%F A228540 A211344(n,k) = T(n,2^(n-k))
%e A228540 Negated binary Walsh matrix of size 4 and row 2 of the triangle:
%e A228540 1 1 1 1        15
%e A228540 1 0 1 0         5
%e A228540 1 1 0 0         3
%e A228540 1 0 0 1         9
%e A228540 Triangle starts:
%e A228540       k  =  0     1     2     3    4     5     6     7   8     9    10    11 ...
%e A228540 n
%e A228540 0           1
%e A228540 1           3     1
%e A228540 2          15     5     3     9
%e A228540 3         255    85    51   153   15   165   195   105
%e A228540 4       65535 21845 13107 39321 3855 42405 50115 26985 255 43605 52275 26265 ...
%Y A228540 A228539 (the same for the binary Walsh matrix, not negated)
%Y A228540 A197818 (antidiagonals of the negated binary Walsh matrix converted to decimal).
%Y A228540 A000215 (Fermat numbers), A023394 (Prime factors of Fermat numbers).
%K A228540 nonn,tabf
%O A228540 0,2
%A A228540 _Tilman Piesk_, Aug 24 2013