cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228553 Sum of the products formed by multiplying together the smaller and larger parts of each Goldbach partition of 2n.

This page as a plain text file.
%I A228553 #31 Feb 02 2023 15:28:24
%S A228553 0,4,9,15,46,35,82,94,142,142,263,357,371,302,591,334,780,980,578,821,
%T A228553 1340,785,1356,1987,1512,1353,2677,1421,2320,4242,1955,2803,4362,1574,
%U A228553 4021,5298,4177,4159,6731,4132,5593,9808
%N A228553 Sum of the products formed by multiplying together the smaller and larger parts of each Goldbach partition of 2n.
%C A228553 Since the product of each prime pair is semiprime and since we are adding A045917(n) of these, a(n) is expressible as the sum of exactly A045917(n) distinct semiprimes.
%H A228553 Robert Israel, <a href="/A228553/b228553.txt">Table of n, a(n) for n = 1..10000</a>
%H A228553 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%H A228553 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A228553 a(n) = Sum_{i=2..n} c(i) * c(2*n-i) * i * (2*n-i), where c = A010051.
%F A228553 a(n) = Sum_{k=(n^2-n+2)/2..(n^2+n-2)/2} c(A105020(k)) * A105020(k), where c = A064911. - _Wesley Ivan Hurt_, Sep 19 2021
%e A228553 a(5) = 46. 2*5 = 10 has two Goldbach partitions: (7,3) and (5,5). Taking the products of the larger and smaller parts of these partitions and adding, we get 7*3 + 5*5 = 46.
%p A228553 with(numtheory); seq(sum( (2*k*i-i^2) * (pi(i)-pi(i-1)) * (pi(2*k-i)-pi(2*k-i-1)),  i=2..k), k=1..70);
%p A228553 # Alternative:
%p A228553 f:= proc(n)
%p A228553   local S;
%p A228553   S:= select(t -> isprime(t) and isprime(2*n-t), [seq(i,i=3..n,2)]);
%p A228553   add(t*(2*n-t),t=S)
%p A228553 end proc:
%p A228553 f(2):= 4:
%p A228553 map(f, [$1..200]); # _Robert Israel_, Nov 29 2020
%t A228553 c[n_] := Boole[PrimeQ[n]];
%t A228553 a[n_] := Sum[c[i]*c[2n-i]*i*(2n-i), {i, 2, n}];
%t A228553 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Feb 02 2023 *)
%Y A228553 Cf. A010051, A045917, A064911, A105020, A185297, A187129.
%K A228553 nonn
%O A228553 1,2
%A A228553 _Wesley Ivan Hurt_, Aug 25 2013