This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A228553 #31 Feb 02 2023 15:28:24 %S A228553 0,4,9,15,46,35,82,94,142,142,263,357,371,302,591,334,780,980,578,821, %T A228553 1340,785,1356,1987,1512,1353,2677,1421,2320,4242,1955,2803,4362,1574, %U A228553 4021,5298,4177,4159,6731,4132,5593,9808 %N A228553 Sum of the products formed by multiplying together the smaller and larger parts of each Goldbach partition of 2n. %C A228553 Since the product of each prime pair is semiprime and since we are adding A045917(n) of these, a(n) is expressible as the sum of exactly A045917(n) distinct semiprimes. %H A228553 Robert Israel, <a href="/A228553/b228553.txt">Table of n, a(n) for n = 1..10000</a> %H A228553 <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a> %H A228553 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A228553 a(n) = Sum_{i=2..n} c(i) * c(2*n-i) * i * (2*n-i), where c = A010051. %F A228553 a(n) = Sum_{k=(n^2-n+2)/2..(n^2+n-2)/2} c(A105020(k)) * A105020(k), where c = A064911. - _Wesley Ivan Hurt_, Sep 19 2021 %e A228553 a(5) = 46. 2*5 = 10 has two Goldbach partitions: (7,3) and (5,5). Taking the products of the larger and smaller parts of these partitions and adding, we get 7*3 + 5*5 = 46. %p A228553 with(numtheory); seq(sum( (2*k*i-i^2) * (pi(i)-pi(i-1)) * (pi(2*k-i)-pi(2*k-i-1)), i=2..k), k=1..70); %p A228553 # Alternative: %p A228553 f:= proc(n) %p A228553 local S; %p A228553 S:= select(t -> isprime(t) and isprime(2*n-t), [seq(i,i=3..n,2)]); %p A228553 add(t*(2*n-t),t=S) %p A228553 end proc: %p A228553 f(2):= 4: %p A228553 map(f, [$1..200]); # _Robert Israel_, Nov 29 2020 %t A228553 c[n_] := Boole[PrimeQ[n]]; %t A228553 a[n_] := Sum[c[i]*c[2n-i]*i*(2n-i), {i, 2, n}]; %t A228553 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Feb 02 2023 *) %Y A228553 Cf. A010051, A045917, A064911, A105020, A185297, A187129. %K A228553 nonn %O A228553 1,2 %A A228553 _Wesley Ivan Hurt_, Aug 25 2013